Plasmonic Photocatalysis of Urea Oxidation and Visible-Light Fuel Cells

被引:43
作者
An, Xingda [1 ,2 ]
Stelter, David [1 ]
Keyes, Tom [1 ]
Reinhard, Bjorn M. [1 ,2 ]
机构
[1] Boston Univ, Dept Chem, 590 Commonwealth Ave, Boston, MA 02215 USA
[2] Boston Univ, Photon Ctr, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
STEERED MOLECULAR-DYNAMICS; CHEMICAL ENERGY; HOT CARRIERS; SOLAR-CELL; METAL; NANOPARTICLES; FLUORESCENCE; CONVERSION; SIZE; ABSORPTION;
D O I
10.1016/j.chempr.2019.06.014
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The intense electric (E-) field associated with the localized surface plasmon resonance (LSPR) of noble-metal nanoantennas provides a rational strategy for enhancing photoinduced charge transfer in photocatalysts. Here, we demonstrate E-field-enhanced direct photocatalytic urea oxidation and a visible-light-driven direct urea fuel cell (LDUFC) with tris(bipyridine)ruthenium(II) ([Ru(bpy)(3)](2+))-enabled plasmonic nanopigments that contain a phospholipid membrane self-assembled around a Ag nanoparticle (NP) whose LSPR overlaps the [Ru(bpy)(3)](2+) metal-to-ligand charge transfer (MLCT). In the hierarchical plasmonic nanopigment design, the membrane serves as scaffold and spacer to localize [Ru(bpy)(3)](2+) in an electromagnetic "sweet spot" where substantial plasmonic enhancement of photoexcitation is achieved while strong metal-associated quenching of the reactive excited state is avoided. The demonstration of plasmon-enhanced photocatalytic urea oxidation and the implementation of the LDUFC represent important advancements toward improved light-driven waste-water treatment and efficient solar energy conversion.
引用
收藏
页码:2228 / 2242
页数:15
相关论文
共 71 条
[21]   Absorption and scattering cross-section extinction values of silver nanoparticles [J].
Hlaing, May ;
Gebear-Eigzabher, Bellsabel ;
Roa, Azael ;
Marcano, Aristides ;
Radu, Daniela ;
Lai, Cheng-Yu .
OPTICAL MATERIALS, 2016, 58 :439-444
[22]   A Review of Surface Plasmon Resonance-Enhanced Photocatalysis [J].
Hou, Wenbo ;
Cronin, Stephen B. .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (13) :1612-1619
[23]   Quenching of [Ru(bpy)3]2+ fluorescence by binding to Au nanoparticles [J].
Huang, T ;
Murray, RW .
LANGMUIR, 2002, 18 (18) :7077-7081
[24]   Water Splitting on Composite Plasmonic-Metal/Semiconductor Photoelectrodes: Evidence for Selective Plasmon-Induced Formation of Charge Carriers near the Semiconductor Surface [J].
Ingram, David B. ;
Linic, Suljo .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (14) :5202-5205
[25]   On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation [J].
Jain, Prashant K. ;
Huang, Wenyu ;
El-Sayed, Mostafa A. .
NANO LETTERS, 2007, 7 (07) :2080-2088
[26]   Nonequilibrium equality for free energy differences [J].
Jarzynski, C .
PHYSICAL REVIEW LETTERS, 1997, 78 (14) :2690-2693
[27]   Direct Photocatalysis by Plasmonic Nanostructures [J].
Kale, Matthew J. ;
Avanesian, Talin ;
Christopher, Phillip .
ACS CATALYSIS, 2014, 4 (01) :116-128
[28]   Distance-dependent fluorescence of tris(bipyridine)ruthenium(II) on supported plasmonic gold nanoparticle ensembles [J].
Kedem, Ofer ;
Wohlleben, Wendel ;
Rubinstein, Israel .
NANOSCALE, 2014, 6 (24) :15134-15143
[29]   The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment [J].
Kelly, KL ;
Coronado, E ;
Zhao, LL ;
Schatz, GC .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (03) :668-677
[30]   Considering the chemical energy requirements of the tri-n-propylamine co-reactant pathways for the judicious design of new electrogenerated chemiluminescence detection systems [J].
Kerr, Emily ;
Doeven, Egan H. ;
Wilson, David J. D. ;
Hogan, Conor F. ;
Francis, Paul S. .
ANALYST, 2016, 141 (01) :62-69