Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit

被引:71
作者
Watanabe, Yuuki [1 ]
Itagaki, Toshiki [1 ]
机构
[1] Yamagata Univ, Grad Sch Sci & Engn, Yamagata 9928510, Japan
基金
日本学术振兴会;
关键词
optical coherence tomography; graphics processing unit; LASER;
D O I
10.1117/1.3275463
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Fourier domain optical coherence tomography (FD-OCT) requires resampling of spectrally resolved depth information from wavelength to wave number, and the subsequent application of the inverse Fourier transform. The display rates of OCT images are much slower than the image acquisition rates due to processing speed limitations on most computers. We demonstrate a real-time display of processed OCT images using a linear-in-wave-number (linear-k) spectrometer and a graphics processing unit (GPU). We use the linear-k spectrometer with the combination of a diffractive grating with 1200 lines/mm and a F2 equilateral prism in the 840-nm spectral region to avoid calculating the resampling process. The calculations of the fast Fourier transform (FFT) are accelerated by the GPU with many stream processors, which realizes highly parallel processing. A display rate of 27.9 frames/sec for processed images (2048 FFT size x 1000 lateral A-scans) is achieved in our OCT system using a line scan CCD camera operated at 27.9 kHz. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3275463]
引用
收藏
页数:3
相关论文
共 11 条
[1]   High-speed wavelength-swept laser source with high-linearity sweep for optical coherence tomography [J].
Chong, Changho ;
Morosawa, Atsushi ;
Sakai, Tooru .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2008, 14 (01) :235-242
[2]   K-space linear Fourier domain mode locked laser and applications for optical coherence tomography [J].
Eigenwillig, Christoph M. ;
Biedermann, Benjamin R. ;
Palte, Gesa ;
Huber, Robert .
OPTICS EXPRESS, 2008, 16 (12) :8916-8937
[3]   MEASUREMENT OF INTRAOCULAR DISTANCES BY BACKSCATTERING SPECTRAL INTERFEROMETRY [J].
FERCHER, AF ;
HITZENBERGER, CK ;
KAMP, G ;
ELZAIAT, SY .
OPTICS COMMUNICATIONS, 1995, 117 (1-2) :43-48
[4]  
GELIKONOV GV, 2008, P SPIE, V6847
[5]  
Govindaraju N.K., 2008, P ACMIEEE C SUPERCOM, DOI [10.1109/SC.2008.5213922, DOI 10.1109/SC.2008.5213922]
[6]  
Häusler G, 1998, J BIOMED OPT, V3, P21, DOI 10.1117/1.429899
[7]   Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer [J].
Hu, Zhilin ;
Rollins, Andrew M. .
OPTICS LETTERS, 2007, 32 (24) :3525-3527
[8]   Performance of fourier domain vs. time domain optical coherence tomography [J].
Leitgeb, R ;
Hitzenberger, CK ;
Fercher, AF .
OPTICS EXPRESS, 2003, 11 (08) :889-894
[9]   Special purpose computer for digital holographic particle tracking velocimetry [J].
Masuda, N ;
Ito, T ;
Kayama, K ;
Kono, H ;
Satake, S ;
Kunugi, T ;
Sato, K .
OPTICS EXPRESS, 2006, 14 (02) :587-592
[10]   Real-time digital holographic microscopy using the graphic processing unit [J].
Shimobaba, Tomoyoshi ;
Sato, Yoshikuni ;
Miura, Junya ;
Takenouchi, Mai ;
Ito, Tomoyoshi .
OPTICS EXPRESS, 2008, 16 (16) :11776-11781