Endothelial response to glucose: dysfunction, metabolism, and transport

被引:65
作者
Clyne, Alisa Morss [1 ]
机构
[1] Univ Maryland, Fischell Dept Bioengn, College Pk, MD 20742 USA
关键词
BLOOD-BRAIN-BARRIER; CELL METABOLISM; ALZHEIMERS-DISEASE; DIABETES-MELLITUS; OXIDATIVE STRESS; EXTRACELLULAR VESICLES; POTENTIAL MECHANISM; MEDIATED INHIBITION; HEXOSAMINE PATHWAY; GLYCATED COLLAGEN;
D O I
10.1042/BST20200611
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The endothelial cell response to glucose plays an important role in both health and disease. Endothelial glucose-induced dysfunction was first studied in diabetic animal models and in cells cultured in hyperglycemia Four classical dysfunction pathways were identified, which were later shown to result from the common mechanism of mitochondrial superoxide overproduction. More recently, non-coding RNA, extracellular vesicles, and sodium-glucose cotransporter-2 inhibitors were shown to affect glucose-induced endothelial dysfunction. Endothelial cells also metabolize glucose for their own energetic needs. Research over the past decade highlighted how manipulation of endothelial glycolysis can be used to control angiogenesis and microvascular permeability in diseases such as cancer. Finally, endothelial cells transport glucose to the cells of the blood vessel wall and to the parenchymal tissue. Increasing evidence from the blood-brain barrier and peripheral vasculature suggests that endothelial cells regulate glucose transport through glucose transporters that move glucose from the apical to the basolateral side of the cell. Future studies of endothelial glucose response should begin to integrate dysfunction, metabolism and transport into experimental and computational approaches that also consider endothelial heterogeneity, metabolic diversity, and parenchymal tissue interactions.
引用
收藏
页码:313 / 325
页数:13
相关论文
共 148 条
[1]   Structure and function of the blood-brain barrier [J].
Abbott, N. Joan ;
Patabendige, Adjanie A. K. ;
Dolman, Diana E. M. ;
Yusof, Siti R. ;
Begley, David J. .
NEUROBIOLOGY OF DISEASE, 2010, 37 (01) :13-25
[2]   Reconstruction of Genome-Scale Active Metabolic Networks for 69 Human Cell Types and 16 Cancer Types Using INIT [J].
Agren, Rasmus ;
Bordel, Sergio ;
Mardinoglu, Adil ;
Pornputtapong, Natapol ;
Nookaew, Intawat ;
Nielsen, Jens .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (05)
[3]   Effect of Sodium-Glucose Cotransporter-2 Inhibitors on Endothelial Function: A Systematic Review of Preclinical Studies [J].
Alshnbari, Afnan S. ;
Millar, Sophie A. ;
O'Sullivan, Saoirse E. ;
Idris, Iskandar .
DIABETES THERAPY, 2020, 11 (09) :1947-1963
[4]   Evidence for brain glucose dysregulation in Alzheimer's disease [J].
An, Yang ;
Varma, Vijay R. ;
Varma, Sudhir ;
Casanova, Ramon ;
Dammer, Eric ;
Pletnikova, Olga ;
Chia, Chee W. ;
Egan, Josephine M. ;
Ferrucci, Luigi ;
Troncoso, Juan ;
Levey, Allan I. ;
Lah, James ;
Seyfried, Nicholas T. ;
Legido-Quigley, Cristina ;
O'Brien, Richard ;
Thambisetty, Madhav .
ALZHEIMERS & DEMENTIA, 2018, 14 (03) :318-329
[5]   Blood-Brain Barrier Permeability Is Regulated by Lipid Transport-Dependent Suppression of Caveolae-Mediated Transcytosis [J].
Andreone, Benjamin J. ;
Chow, Brian Wai ;
Tata, Aleksandra ;
Lacoste, Baptiste ;
Ben-Zvi, Ayal ;
Bullock, Kevin ;
Deik, Amy A. ;
Ginty, David D. ;
Clish, Clary B. ;
Gu, Chenghua .
NEURON, 2017, 94 (03) :581-+
[6]   Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury [J].
Aroor, Annayya R. ;
Das, Nitin A. ;
Carpenter, Andrea J. ;
Habibi, Javad ;
Jia, Guanghong ;
Ramirez-Perez, Francisco I. ;
Martinez-Lemus, Luis ;
Manrique-Acevedo, Camila M. ;
Hayden, Melvin R. ;
Duta, Cornel ;
Nistala, Ravi ;
Mayoux, Eric ;
Padilla, Jaume ;
Chandrasekar, Bysani ;
DeMarco, Vincent G. .
CARDIOVASCULAR DIABETOLOGY, 2018, 17
[7]   Relation of cerebral vessel disease to Alzheimer's disease dementia and cognitive function in elderly people: a cross-sectional study [J].
Arvanitakis, Zoe ;
Capuano, Ana W. ;
Leurgans, Sue E. ;
Bennett, David A. ;
Schneider, Julie A. .
LANCET NEUROLOGY, 2016, 15 (09) :934-943
[8]   Microvesicles in Atherosclerosis and Angiogenesis: From Bench to Bedside and Reverse [J].
Badimon, Lina ;
Suades, Rosa ;
Arderiu, Gemma ;
Pena, Esther ;
Chiva-Blanch, Gemma ;
Padro, Teresa .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2017, 4
[9]   High glucose derived endothelial microparticles increase active caspase-3 and reduce microRNA-Let-7a expression in endothelial cells [J].
Bammert, Tyler D. ;
Hijmans, Jamie G. ;
Reiakvam, Whitney R. ;
Levy, Ma'ayan V. ;
Brewster, Lillian M. ;
Goldthwaite, Zoe A. ;
Greiner, Jared J. ;
Stockelman, Kelly A. ;
DeSouza, Christopher A. .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2017, 493 (02) :1026-1029
[10]   O-Linked β-N-Acetylglucosamine Transferase Directs Cell Proliferation in Idiopathic Pulmonary Arterial Hypertension [J].
Barnes, Jarrod W. ;
Tian, Liping ;
Heresi, Gustavo A. ;
Farver, Carol F. ;
Asosingh, Kewal ;
Comhair, Suzy A. A. ;
Aulak, Kulwant S. ;
Dweik, Raed A. .
CIRCULATION, 2015, 131 (14) :1260-1268