Numerical Solution of Multidimensional Stochastic Ito-Volterra Integral Equation Based on the Least Squares Method and Block Pulse Function

被引:3
作者
Ke, Ting [1 ]
Jiang, Guo [1 ]
Deng, Mengting [1 ]
机构
[1] Hubei Normal Univ, Sch Math & Stat, Huangshi 435002, Hubei, Peoples R China
关键词
CONVERGENCE ANALYSIS; SYSTEM; ALGORITHM; HYBRID;
D O I
10.1155/2021/6662604
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a method based on the least squares method and block pulse function is proposed to solve the multidimensional stochastic Ito-Volterra integral equation. The Ito-Volterra integral equation is transformed into a linear algebraic equation. Furthermore, the error analysis is given by the isometry property and Doob's inequality. Numerical examples verify the effectiveness and precision of this method.
引用
收藏
页数:10
相关论文
共 32 条
  • [1] Numerical solution of Ito-Volterra integral equation by least squares method
    Ahmadinia, M.
    Afshari, H. A.
    Heydari, M.
    [J]. NUMERICAL ALGORITHMS, 2020, 84 (02) : 591 - 602
  • [2] Alipour S., APPL MATH COMPUT, V2020, P371
  • [3] [Anonymous], 1999, NUMERICAL SOLUION ST, DOI DOI 10.1007/978-3-662-12616-5
  • [4] [Anonymous], 2002, 1 COURSE WAVELETS FO
  • [5] Asgari M, 2014, B MATH SOC SCI MATH, V57, P3
  • [6] Blyth W.F., 2003, ANZIAM J, V45, P269
  • [7] Levy-driven stochastic Volterra integral equations with doubly singular kernels: existence, uniqueness, and a fast EM method
    Dai, Xinjie
    Xiao, Aiguo
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2020, 46 (02)
  • [8] Well-posedness and EM approximations for non-Lipschitz stochastic fractional integro-differential equations
    Dai, Xinjie
    Bu, Weiping
    Xiao, Aiguo
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 356 : 377 - 390
  • [9] EZZATI R, 2012, INDIAN J SCI TECHNOL, V5, P2060
  • [10] Huang J, P 2019 IEEE INT C AR, P121