An application of convolutional neural networks for automatic inspection

被引:0
|
作者
Calderon-Martinez, Jose A. [1 ]
Carnpoy-Cervera, Pascual [2 ]
机构
[1] Inst Tecnol Aguscalientes, Dept Elect & Elect Engn, Aguscalientes 20256, Mexico
[2] Univ Politecn Madrid, Dept Automat Control Elect Engn & Ind Comp, E-28006 Madrid, Spain
关键词
automatic inspection; artificial vision; convolutional neural networks; filters;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic inspection in today's manufacturing is critical to be competitive. In this paper experimental results from the application of digital filters for defects detection in paper pulp production are shown. These filters have been automatically generated by means of a convolutional neural architecture, that uses a modified back-propagation algorithm. The main subjects discussed are: Convolutional Top-Down Spiral Architecture a tool used to automatically generate digital filters, a simple but effective modification to the back-propagation algorithm for this application, and experimental results.
引用
收藏
页码:492 / +
页数:3
相关论文
共 50 条
  • [1] Automatic inspection and analysis of digital waveform images by means of convolutional neural networks
    Pignatelli, Alessandro
    D'Ajello Caracciolo, Francesca
    Console, Rodolfo
    JOURNAL OF SEISMOLOGY, 2021, 25 (06) : 1347 - 1359
  • [2] Automatic inspection and analysis of digital waveform images by means of convolutional neural networks
    Alessandro Pignatelli
    Francesca D’Ajello Caracciolo
    Rodolfo Console
    Journal of Seismology, 2021, 25 : 1347 - 1359
  • [3] Automatic inspection machine for maize kernels based on deep convolutional neural networks
    Ni, Chao
    Wang, Dongyi
    Vinson, Robert
    Holmes, Maxwell
    Tao, Yang
    BIOSYSTEMS ENGINEERING, 2019, 178 : 131 - 144
  • [4] Automatic Mobile Application Traffic Identification by Convolutional Neural Networks
    Chen, Zhengyang
    Yu, Bowen
    Zhang, Yu
    Zhang, Jianzhong
    Xu, Jingdong
    2016 IEEE TRUSTCOM/BIGDATASE/ISPA, 2016, : 301 - 307
  • [5] Semi-automatic quality inspection of solar cell based on Convolutional Neural Networks
    Balzategui, Julen
    Eciolaza, Luka
    Arana-Arexolaleiba, Nestor
    Altube, Jon
    Aguerre, Jean-Philippe
    Legarda-Ereno, Ifiaki
    Apraiz, Aitor
    2019 24TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2019, : 529 - 535
  • [6] Neural networks for automatic building inspection
    Rughooputh, HCS
    Rughooputh, SDDV
    PROCEEDINGS OF THE FIFTH JOINT CONFERENCE ON INFORMATION SCIENCES, VOLS 1 AND 2, 2000, : 832 - 835
  • [7] Automatic Optical Surface Inspection of Wind Turbine Rotor Blades using Convolutional Neural Networks
    Denhof, Dimitri
    Staar, Benjamin
    Luetjen, Michael
    Freitag, Michael
    52ND CIRP CONFERENCE ON MANUFACTURING SYSTEMS (CMS), 2019, 81 : 1166 - 1170
  • [8] Automatic Deployment of Convolutional Neural Networks on FPGA for Spaceborne Remote Sensing Application
    Yan, Tianwei
    Zhang, Ning
    Li, Jie
    Liu, Wenchao
    Chen, He
    REMOTE SENSING, 2022, 14 (13)
  • [9] Automatic Hospital Inspection System Based on Convolutional Neural Network
    Ao, Bangqian
    Lin, Yuan
    Gao, Zhiwu
    Han, Ye
    Zhang, Nanqing
    Proceedings - 2022 International Conference on Information Technology, Communication Ecosystem and Management, ITCEM 2022, 2022, : 51 - 55
  • [10] Convolutional Neural Networks in the Inspection of Serrasalmids (Characiformes) Fingerlings
    Fernandes, Marilia Parreira
    Costa, Adriano Carvalho
    Franca, Heyde Francielle do Carmo
    Souza, Alene Santos
    Viadanna, Pedro Henrique de Oliveira
    Lima, Lessandro do Carmo
    Horn, Liege Dauny
    Pierozan, Matheus Barp
    de Rezende, Isabel Rodrigues
    de Medeiros, Rafaella Machado dos S.
    Braganholo, Bruno Moraes
    da Silva, Lucas Oliveira Pereira
    Nacife, Jean Marc
    Costa, Katia Aparecida de Pinho
    da Silva, Marco Antonio Pereira
    de Oliveira, Rodrigo Fortunato
    ANIMALS, 2024, 14 (04):