Investigation of device transport characteristics enhancement of In0.53Ga0.47As MOSFET through in situ NH3/N2 remote-plasma treatment

被引:5
作者
Huang, P. [1 ]
Luc, Q. H. [2 ]
Sibaja-Hernandez, A. [3 ]
Hsu, C. W. [2 ]
Wu, J. Y. [1 ]
Ko, H. L. [1 ]
Tran, N. A. [2 ]
Collaert, N. [3 ]
Chang, E. Y. [1 ,2 ,4 ]
机构
[1] Natl Chiao Tung Univ, Int Coll Semicond Technol, Hsinchu 30010, Taiwan
[2] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan
[3] IMEC, B-3001 Leuven, Belgium
[4] Natl Chiao Tung Univ, Dept Elect Engn, Hsinchu 30010, Taiwan
关键词
MOBILITY; INGAAS; EXTRACTION; PASSIVATION; AL2O3;
D O I
10.1063/5.0037378
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, we demonstrated considerable enhancement of the transport characteristics of n-type Al2O3/In0.53Ga0.47As metal-oxide-semiconductor field-effect transistors (n-MOSFETs) with the assistance of in situ NH3/N-2 remote-plasma (RP) treatment. According to the measurement and simulation results, the RP treated sample shows superior device performances as compared to the control sample without plasma treatment including (a) improved on-current (I-on) from 8.5 mA/mm to 17 mA/mm, (b) improved transconductance (G(m)) from 16.05 mS/mm to 28.52 mS/mm, (c) suppressed subthreshold swing from 189 mV/dec to 170 mV/dec, (d) suppressed drain induced barrier lowering from 36 mV/V to 28 mV/V, (e) intensified peak effective mobility (mu (eff)) from 1896 cm(2) V-1 s(-1) to 2956 cm(2) V-1 s(-1), and (f) reduced acceptor-type density of interface trap state (D-it,D-A) to 44%. By using TCAD simulation, device output performance is found to be dramatically impacted by the trap state (especially acceptor-type) at the Al2O3/InGaAs interface.
引用
收藏
页数:8
相关论文
共 40 条
[21]   Interface Engineering for InGaAs n-MOSFET Application Using Plasma PH3-N2 Passivation [J].
Oh, Hoon-Jung ;
Suleiman, Sumarlina Azzah Bte ;
Lee, Sungjoo .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (11) :H1051-H1060
[22]   Surface passivation and aging of InGaAs/InP heterojunction phototransistors [J].
Park, Min-Su ;
Razaei, Mohsen ;
Barnhart, Katie ;
Tan, Chee Leong ;
Mohseni, Hooman .
JOURNAL OF APPLIED PHYSICS, 2017, 121 (23)
[23]   Characterization of 4H-SiC MOSFET interface trap charge density using a first principles Coulomb scattering mobility model and device simulation [J].
Potbhare, S ;
Pennington, G ;
Goldsman, N ;
McGarrity, JM ;
Lelis, A .
SISPAD: 2005 International Conference on Simulation of Semiconductor Processes and Devices, 2005, :95-98
[24]   Effects of In-Situ Plasma-Enhanced Atomic Layer Deposition Treatment on the Performance of HfO2/In0.53Ga0.47As Metal-Oxide-Semiconductor Field-Effect Transistors [J].
Quang Ho Luc ;
Cheng, Shou Po ;
Chang, Po Chun ;
Huy Binh Do ;
Chen, Jin Han ;
Minh Thien Huu Ha ;
Sa Hoang Huynh ;
Hu, Chenming Calvin ;
Lin, Yueh Chin ;
Chang, Edward Yi .
IEEE ELECTRON DEVICE LETTERS, 2016, 37 (08) :974-977
[25]   Electrical Characteristics of n, p-In0.53Ga0.47As MOSCAPs With In Situ PEALD-AlN Interfacial Passivation Layer [J].
Quang Ho Luc ;
Chang, Edward Yi ;
Hai Dang Trinh ;
Lin, Yueh Chin ;
Hong Quan Nguyen ;
Wong, Yuen Yee ;
Huy Binh Do ;
Salahuddin, Sayeef ;
Hu, Chenming Calvin .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (08) :2774-2778
[26]   Defect state passivation at III-V oxide interfaces for complementary metal-oxide-semiconductor devices [J].
Robertson, J. ;
Guo, Y. ;
Lin, L. .
JOURNAL OF APPLIED PHYSICS, 2015, 117 (11)
[27]  
Rodriguez Ph, 2015, ECS Transactions, V69, P251, DOI 10.1149/06908.0251ecst
[28]   In situ cleaning of InGaAs surfaces prior to low contact resistance metallization [J].
Rodriguez, Ph. ;
Toselli, L. ;
Ghegin, E. ;
Chevalier, N. ;
Rochat, N. ;
Martinez, E. ;
Nemouchi, F. .
MICROELECTRONIC ENGINEERING, 2016, 156 :91-96
[29]  
Rodwell M., 2007, P IEEE INT EL DEV M
[30]  
Schroder D.K., 1990, Semiconductor material and device characterization