Self-adaptive inertial subgradient extragradient algorithm for solving pseudomonotone variational inequalities

被引:34
|
作者
Yang, Jun [1 ,2 ]
机构
[1] Xianyang Normal Univ, Sch Math & Informat Sci, Xianyang, Peoples R China
[2] Xidian Univ, Sch Math & Stat, Xian, Peoples R China
关键词
Variational inequalities; projection; subgradient extragradient method; pseudomonotone mapping; convex set;
D O I
10.1080/00036811.2019.1634257
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce an inertial algorithm for solving classical variational inequalities with Lipschitz continuous and pseudomonotone mapping in real Hilbert space. The algorithm is inspired by subgradient extragradient method and the inertial method with a new step size. The convergence of algorithm is established without the knowledge of the Lipschitz constant of the mapping. Finally, some numerical experiments are presented to show the efficiency and advantage of the proposed algorithm.
引用
收藏
页码:1067 / 1078
页数:12
相关论文
共 50 条
  • [31] SOLVING VARIATIONAL INCLUSIONS AND PSEUDOMONOTONE VARIATIONAL INEQUALITIES USING SELF-ADAPTIVE TECHNIQUES
    Yao, Zhangsong
    Zhu, Zhichuan
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (11) : 2535 - 2545
  • [32] Self adaptive inertial extragradient algorithms for solving bilevel pseudomonotone variational inequality problems
    Bing Tan
    Liya Liu
    Xiaolong Qin
    Japan Journal of Industrial and Applied Mathematics, 2021, 38 : 519 - 543
  • [33] Strong convergence inertial projection algorithm with self-adaptive step size rule for pseudomonotone variational inequalities in Hilbert spaces
    Wairojjana, Nopparat
    Pakkaranang, Nuttapol
    Pholasa, Nattawut
    DEMONSTRATIO MATHEMATICA, 2021, 54 (01) : 110 - 128
  • [34] Strong convergence of inertial subgradient extragradient algorithm for solving pseudomonotone equilibrium problems
    Duong Viet Thong
    Prasit Cholamjiak
    Michael T. Rassias
    Yeol Je Cho
    Optimization Letters, 2022, 16 : 545 - 573
  • [35] Self adaptive inertial extragradient algorithms for solving bilevel pseudomonotone variational inequality problems
    Tan, Bing
    Liu, Liya
    Qin, Xiaolong
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2021, 38 (02) : 519 - 543
  • [36] Strong convergence of inertial subgradient extragradient algorithm for solving pseudomonotone equilibrium problems
    Thong, Duong Viet
    Cholamjiak, Prasit
    Rassias, Michael T.
    Cho, Yeol Je
    OPTIMIZATION LETTERS, 2022, 16 (02) : 545 - 573
  • [37] Modified self-adaptive projection method for solving pseudomonotone variational inequalities
    Yu, Zeng
    Shao, Hu
    Wang, Guodong
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (20) : 8052 - 8060
  • [38] Strong convergence of a self-adaptive inertial Tseng's extragradient method for pseudomonotone variational inequalities and fixed point problems
    Uzor, Victor Amarachi
    Alakoya, Timilehin Opeyemi
    Mewomo, Oluwatosin Temitope
    OPEN MATHEMATICS, 2022, 20 (01): : 234 - 257
  • [39] An inertial subgradient extragradient algorithm with adaptive stepsizes for variational inequality problems
    Chang, Xiaokai
    Liu, Sanyang
    Deng, Zhao
    Li, Suoping
    OPTIMIZATION METHODS & SOFTWARE, 2022, 37 (04) : 1507 - 1526
  • [40] An explicit subgradient extragradient algorithm with self-adaptive stepsize for pseudomonotone equilibrium problems in Banach spaces
    Jolaoso, Lateef Olakunle
    Aphane, Maggie
    NUMERICAL ALGORITHMS, 2022, 89 (02) : 583 - 610