Nonlinear conjugate gradient methods in micromagnetics

被引:40
作者
Fischbacher, J. [1 ]
Kovacs, Alexander [1 ]
Oezelt, Harald [1 ]
Schrefl, T. [1 ]
Exl, L. [2 ,3 ]
Fidler, J. [3 ]
Suess, D. [4 ]
Sakuma, N. [5 ,6 ]
Yano, M. [5 ,6 ]
Kato, A. [5 ,6 ]
Shoji, T. [5 ,6 ]
Manabe, A. [6 ]
机构
[1] Danube Univ Krems, Ctr Integrated Sensor Syst, A-2700 Wiener Neustadt, Austria
[2] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[3] TU Wien, Inst Solid State Phys, A-1040 Vienna, Austria
[4] TU Wien, CD Lab Adv Magnet Sensing & Mat, A-1040 Vienna, Austria
[5] Toyota Motor Co Ltd, 1200 Mishuku, Susono, Shizuoka 4101193, Japan
[6] Technol Res Assoc Magnet Mat High Efficiency Moto, Higashifuji Branch, 1200 Mishuku, Susono, Shizuoka 4101193, Japan
基金
奥地利科学基金会;
关键词
D O I
10.1063/1.4981902
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Conjugate gradient methods for energy minimization in micromagnetics are compared. The comparison of analytic results with numerical simulation shows that standard conjugate gradient method may fail to produce correct results. A method that restricts the step length in the line search is introduced, in order to avoid this problem. When the step length in the line search is controlled, conjugate gradient techniques are a fast and reliable way to compute the hysteresis properties of permanent magnets. The method is applied to investigate demagnetizing effects in NdFe12 based permanent magnets. The reduction of the coercive field by demagnetizing effects is mu(0)Delta H = 1.4 T at 450 K. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:13
相关论文
共 41 条
[1]  
Andrei Neculai, 2007, Studies in Informatics and Control, V16, P333
[2]  
[Anonymous], 1038 I COMP SCI AC S
[3]  
[Anonymous], 2014, Tensor Grid Methods for Micromagnetic Simulations
[4]  
[Anonymous], AMGCL DOCUMENTATION
[5]  
[Anonymous], 2007, Handbook of Magnetism and Advanced Magnetic Materials
[6]  
[Anonymous], SPRINGER SCI BUSINES
[7]   Unexpected Width of Minor Magnetic Hysteresis Loops in Nanostructures [J].
Bachleitner-Hofmann, Anton ;
Abert, Claas ;
Bruckner, Florian ;
Palmesi, Pietro ;
Satz, Armin ;
Suess, Dieter .
IEEE TRANSACTIONS ON MAGNETICS, 2016, 52 (07)
[8]   Grain-size dependent demagnetizing factors in permanent magnets [J].
Bance, S. ;
Seebacher, B. ;
Schrefl, T. ;
Exl, L. ;
Winklhofer, M. ;
Hrkac, G. ;
Zimanyi, G. ;
Shoji, T. ;
Yano, M. ;
Sakuma, N. ;
Ito, M. ;
Kato, A. ;
Manabe, A. .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (23)
[9]  
BROWN F., 1963, Micromagnetics
[10]   A review of finite element open boundary techniques for static and quasi-static electromagnetic field problems [J].
Chen, Q ;
Konrad, A .
IEEE TRANSACTIONS ON MAGNETICS, 1997, 33 (01) :663-676