Stress response and characterization of oil-in-water emulsions stabilized with Kluyveromyces marxianus mannoprotein

被引:6
|
作者
Hajhosseini, Ashraf [1 ]
Doroud, Delaram [2 ]
Sharifan, Anousheh [1 ]
Eftekhari, Zohreh [3 ]
机构
[1] Islamic Azad Univ, Dept Food Sci & Technol, Sci & Res Branch, Tehran, Iran
[2] Pasteur Inst Iran, Prod & Res Complex, Tehran, Iran
[3] Pasteur Inst Iran, Qual Control Dept, Tehran, Iran
关键词
emulsion; physical properties; polysaccharides; yeast; ALPHA-D-MANNAN; STRUCTURAL-CHARACTERIZATION; KAPPA-CARRAGEENAN; PROTEIN; ANTIOXIDANT; ABILITY; IMPACT;
D O I
10.1111/1750-3841.15584
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
This study was intended to investigate physico-chemical, rheological, and emulsifying properties of oil-in-water emulsions prepared from the Kluyveromyces marxianus mannoprotein (KMM). Also, the stress-response function of the KMM emulsions was compared with that of the whey protein concentrate (WPC) emulsions in terms of zeta potential, size, and rheology. The stress experiments were conducted at different pH (3 to 9), ionic composition (0 to 500 mM NaCl), and temperatures (30 to 90 degrees C). The extracted KMM with a molecular weight of 107.2 kDa had 28.8% proteins and 68.22% carbohydrates. With increasing the KMM concentration to 1.5% (w/w), the zeta potential, droplet size, and apparent viscosity of the emulsions reached -35 mV, similar to 1 mu, and similar to 9 mPa center dot s, respectively. After applying pH, ionic composition, and temperature, the KMM emulsions were more stable than the WPC emulsions. In conclusion, KMM can be used as a bioemulsifier and be more effective in stabilizing emulsions than WPC.
引用
收藏
页码:454 / 462
页数:9
相关论文
共 50 条
  • [1] Physico-chemical characterization of protein stabilized oil-in-water emulsions
    Krstonosic, Veljko S.
    Kalic, Marina D.
    Dapcevic-Hadnadev, Tamara R.
    Loncarevic, Ivana S.
    Hadnadev, Miroslav S.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2020, 602
  • [2] Formulation and Characterization of Oil-in-Water Emulsions Stabilized by Saponins Extracted from Hedera Helix Algeriensis Using Response Surface Method
    Sabri, Nadjia
    Moulai-Mostefa, Nadji
    BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY, 2020, 10 (05): : 6209 - 6219
  • [3] Formulation and characterization of oil-in-water emulsions stabilized by gelatinized kudzu starch
    Zhao, Yiguo
    Khalid, Nauman
    Shu, Gaofeng
    Neves, Marcos A.
    Kobayashi, Isao
    Nakajima, Mitsutoshi
    INTERNATIONAL JOURNAL OF FOOD PROPERTIES, 2017, 20 : 1329 - 1341
  • [4] Breaking oil-in-water emulsions stabilized by yeast
    Furtado, Guilherme F.
    Picone, Carolina S. F.
    Cuellar, Maria C.
    Cunha, Rosiane L.
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2015, 128 : 568 - 576
  • [5] In Vitro Digestion of Oil-in-Water Emulsions Stabilized by Regenerated Chitin
    Xiao, Yongmei
    Chen, Chen
    Wang, Bijia
    Mao, Zhiping
    Xu, Hong
    Zhong, Yi
    Zhang, Linping
    Sui, Xiaofeng
    Qu, Shen
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2018, 66 (46) : 12344 - 12352
  • [6] Characterization of Physicochemical Properties of Oil-in-Water Emulsions Stabilized by Tremella fuciformis Polysaccharides
    Hou, Furong
    Yang, Shuhui
    Ma, Xiaobin
    Gong, Zhiqing
    Wang, Yansheng
    Wang, Wenliang
    FOODS, 2022, 11 (19)
  • [7] Oil-in-water emulsions stabilized by sodium phosphorylated chitosan
    Chongprakobkit, Suchada
    Maniratanachote, Rawiwan
    Tachaboonyakiat, Wanpen
    CARBOHYDRATE POLYMERS, 2013, 96 (01) : 82 - 90
  • [8] Gelation of oil-in-water emulsions stabilized by whey protein
    Mantovani, Raphaela Araujo
    Fazani Cavallieri, Angelo Luiz
    Cunha, Rosiane Lopes
    JOURNAL OF FOOD ENGINEERING, 2016, 175 : 108 - 116
  • [9] Oil-in-water food emulsions stabilized by tuna proteins
    Ruiz-Marquez, D.
    Partal, P.
    Franco, J. M.
    Gallegos, C.
    GRASAS Y ACEITES, 2010, 61 (04) : 352 - 360
  • [10] Properties and stability of oil-in-water emulsions stabilized by fish gelatin
    Surh, J
    Decker, EA
    McClements, DJ
    FOOD HYDROCOLLOIDS, 2006, 20 (05) : 596 - 606