FACIAL EXPRESSION RECOGNITION IN THE WILD USING RICH DEEP FEATURES

被引:0
|
作者
Karali, Abubakrelsedik [1 ]
Bassiouny, Ahmad [1 ]
El-Saban, Motaz [1 ]
机构
[1] Microsoft Technol & Res, Microsoft Adv Technol Labs, Cairo, Egypt
来源
2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2015年
关键词
Facial expression recognition; deep neural networks features;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Facial Expression Recognition is an active area of research in computer vision with a wide range of applications. Several approaches have been developed to solve this problem for different benchmark datasets. However, Facial Expression Recognition in the wild remains an area where much work is still needed to serve real-world applications. To this end, in this paper we present a novel approach towards facial expression recognition. We fuse rich deep features with domain knowledge through encoding discriminant facial patches. We conduct experiments on two of the most popular benchmark datasets; CK and TFE. Moreover, we present a novel dataset that, unlike its precedents, consists of natural - not acted - expression images. Experimental results show that our approach achieves state-of-the-art results over standard benchmarks and our own dataset.
引用
收藏
页码:3442 / 3446
页数:5
相关论文
共 50 条
  • [1] Facial expression recognition in the wild based on multimodal texture features
    Sun, Bo
    Li, Liandong
    Zhou, Guoyan
    He, Jun
    JOURNAL OF ELECTRONIC IMAGING, 2016, 25 (06)
  • [2] Deep Generic Features and SVM for Facial Expression Recognition
    Duc Minh Vo
    Thai Hoang Le
    2016 3RD NATIONAL FOUNDATION FOR SCIENCE AND TECHNOLOGY DEVELOPMENT CONFERENCE ON INFORMATION AND COMPUTER SCIENCE (NICS), 2016, : 80 - 84
  • [3] Learning Informative and Discriminative Features for Facial Expression Recognition in the Wild
    Li, Yingjian
    Lu, Yao
    Chen, Bingzhi
    Zhang, Zheng
    Li, Jinxing
    Lu, Guangming
    Zhang, David
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (05) : 3178 - 3189
  • [4] Facial Expression Recognition in the Wild Using Multi-Level Features and Attention Mechanisms
    Li, Yingjian
    Lu, Guangming
    Li, Jinxing
    Zhang, Zheng
    Zhang, David
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (01) : 451 - 462
  • [5] Deep Siamese Neural Networks for Facial Expression Recognition in the Wild
    Hayale, Wassan
    Negi, Pooran Singh
    Mahoor, Mohammad H.
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (02) : 1148 - 1158
  • [6] Learning Deep Global Multi-Scale and Local Attention Features for Facial Expression Recognition in the Wild
    Zhao, Zengqun
    Liu, Qingshan
    Wang, Shanmin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 6544 - 6556
  • [7] Local Learning With Deep and Handcrafted Features for Facial Expression Recognition
    Georgescu, Mariana-Iuliana
    Ionescu, Radu Tudor
    Popescu, Marius
    IEEE ACCESS, 2019, 7 : 64827 - 64836
  • [8] Facial expression recognition using iterative fusion of MO-HOG and deep features
    Hao Wang
    Senbing Wei
    Baofu Fang
    The Journal of Supercomputing, 2020, 76 : 3211 - 3221
  • [9] Facial expression recognition using iterative fusion of MO-HOG and deep features
    Wang, Hao
    Wei, Senbing
    Fang, Baofu
    JOURNAL OF SUPERCOMPUTING, 2020, 76 (05): : 3211 - 3221
  • [10] A deep-learning-based facial expression recognition method using textural features
    Mukhopadhyay, Moutan
    Dey, Aniruddha
    Kahali, Sayan
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (09): : 6499 - 6514