Modulational instability in addition to discrete breathers in 2D quantum ultracold atoms loaded in optical lattices

被引:13
作者
Djoufack, Z., I [1 ,2 ,3 ]
Fotsa-Ngaffo, F. [4 ,5 ]
Tala-Tebue, E. [1 ]
Fendzi-Donfack, E. [6 ]
Kapche-Tagne, F. [1 ]
机构
[1] Fotso Victor Univ Inst Technol, Dept Telecommun & Network Engn, LAIA, POB 134, Bandjoun, Cameroon
[2] Univ Dschang, Dschang, Cameroon
[3] African Inst Math Sci, 6 Melrose, ZA-7945 Cape Town, South Africa
[4] Univ Yaounde I, Inst Wood Technol, POB 306, Mbalmayo, Cameroon
[5] Univ Buea, Fac Sci, Dept Phys, Buea, Cameroon
[6] Univ Douala, Pure Phys Lab, Grp Nonlinear Phys & Complex Syst, Dept Phys, POB 24157, Douala, Cameroon
关键词
Discrete breathers; Modulational instability; Optical lattice; Quantum ultracold atoms; NONLINEAR SCHRODINGER-EQUATION; LOCALIZED MODES; SOLITONS; WAVES; SUPERFLUID; INSULATOR; BOSON;
D O I
10.1007/s11071-019-05295-w
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The modulational instability associated with discrete breathers in 2D quantum ultracold atoms is studied by using the Glauber's coherent state combined with a semi-discrete approximation and multiple-scale methods. The linear stability analysis exhibits an intriguing threshold amplitude and instability regions associated with modulational growth rate. In addition, we demonstrate a coexistence of two bright intrinsic localized modes namely, the radial symmetric and bilateral symmetric modes, at the center and at the edges of the Brillouin zone, respectively, by alternating the on-site parameter interaction. Numerical investigations reveal a good agreement with the theoretical analysis.
引用
收藏
页码:1905 / 1918
页数:14
相关论文
共 80 条
[1]   Modulational instability and discrete breathers in the discrete cubic-quintic nonlinear Schrodinger equation [J].
Abdullaev, F. Kh. ;
Bouketir, A. ;
Messikh, A. ;
Umarov, B. A. .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 232 (01) :54-61
[2]   Entanglement Spectrum of the Two-Dimensional Bose-Hubbard Model [J].
Alba, Vincenzo ;
Haque, Masudul ;
Laeuchli, Andreas M. .
PHYSICAL REVIEW LETTERS, 2013, 110 (26)
[3]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[4]   Dynamical instability in the S=1 Bose-Hubbard model [J].
Asaoka, Rui ;
Tsuchiura, Hiroki ;
Yamashita, Makoto ;
Toga, Yuta .
PHYSICAL REVIEW A, 2016, 93 (01)
[5]   Density Modulations Associated with the Dynamical Instability in the Bose-Hubbard Model [J].
Asaoka, Rui ;
Tsuchiura, Hiroki ;
Yamashita, Makoto ;
Toga, Yuta .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2014, 83 (12)
[6]   ON THE SELF-FOCUSING OF WHISTLER WAVES IN A RADIAL INHOMOGENEOUS-PLASMA [J].
BALMASHNOV, AA .
PHYSICS LETTERS A, 1980, 79 (5-6) :402-404
[7]   Baseband modulation instability as the origin of rogue waves [J].
Baronio, Fabio ;
Chen, Shihua ;
Grelu, Philippe ;
Wabnitz, Stefan ;
Conforti, Matteo .
PHYSICAL REVIEW A, 2015, 91 (03)
[8]   Multisplitting and collapse of self-focusing anisotropic beams in normal anomalous dispersive media [J].
Berge, L ;
Rasmussen, JJ .
PHYSICS OF PLASMAS, 1996, 3 (03) :824-843
[9]   Ultracold quantum gases in optical lattices [J].
Bloch, I .
NATURE PHYSICS, 2005, 1 (01) :23-30
[10]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964