Coupled Nonlinear Delay Systems as Deep Convolutional Neural Networks

被引:44
作者
Penkovsky, Bogdan [1 ,2 ]
Porte, Xavier [1 ]
Jacquot, Maxime [1 ]
Larger, Laurent [1 ]
Brunner, Daniel [1 ]
机构
[1] Univ Bourgogne Franche Comte, UMR CNRS 6174, FEMTO ST Opt Dept, 15B Ave Monthoucons, F-25030 Besancon, France
[2] Univ Paris Saclay, Univ Paris Sud, CNRS, Ctr Nanosci & Nanotechnol, F-91405 Orsay, France
基金
欧盟地平线“2020”;
关键词
D O I
10.1103/PhysRevLett.123.054101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Neural networks are transforming the field of computer algorithms, yet their emulation on current computing substrates is highly inefficient. Reservoir computing was successfully implemented on a large variety of substrates and gave new insight in overcoming this implementation bottleneck. Despite its success, the approach lags behind the state of the art in deep learning. We therefore extend time-delay reservoirs to deep networks and demonstrate that these conceptually correspond to deep convolutional neural networks. Convolution is intrinsically realized on a substrate level by generic drive-response properties of dynamical systems. The resulting novelty is avoiding vector matrix products between layers, which cause low efficiency in today's substrates. Compared to singleton time-delay reservoirs, our deep network achieves accuracy improvements by at least an order of magnitude in Mackey-Glass and Lorenz time series prediction.
引用
收藏
页数:5
相关论文
共 34 条
[1]  
[Anonymous], 2016, ESANN
[2]  
[Anonymous], ARXIV170404760
[3]  
Antonik P., 2016, IEEE T NEURAL NETWOR, V28, P1
[4]   Information processing using a single dynamical node as complex system [J].
Appeltant, L. ;
Soriano, M. C. ;
Van der Sande, G. ;
Danckaert, J. ;
Massar, S. ;
Dambre, J. ;
Schrauwen, B. ;
Mirasso, C. R. ;
Fischer, I. .
NATURE COMMUNICATIONS, 2011, 2
[5]   2-DIMENSIONAL REPRESENTATION OF A DELAYED DYNAMIC SYSTEM [J].
ARECCHI, FT ;
GIACOMELLI, G ;
LAPUCCI, A ;
MEUCCI, R .
PHYSICAL REVIEW A, 1992, 45 (07) :R4225-R4228
[6]   Tutorial: Photonic neural networks in delay systems [J].
Brunner, D. ;
Penkovsky, B. ;
Marquez, B. A. ;
Jacquot, M. ;
Fischer, I. ;
Larger, L. .
JOURNAL OF APPLIED PHYSICS, 2018, 124 (15)
[7]   Reinforcement learning in a large-scale photonic recurrent neural network [J].
Bueno, J. ;
Maktoobi, S. ;
Froehly, L. ;
Fischer, I. ;
Jacquot, M. ;
Larger, L. ;
Brunner, D. .
OPTICA, 2018, 5 (06) :756-760
[8]  
Gallicchio C., ARXIV171204323
[9]  
Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[10]   Stochastic nonlinear time series forecasting using time-delay reservoir computers: Performance and universality [J].
Grigoryeva, Lyudmila ;
Henriques, Julie ;
Larger, Laurent ;
Ortega, Juan-Pablo .
NEURAL NETWORKS, 2014, 55 :59-71