Fuzzy K-Means Cluster Based Generalized Predictive Control of Ultra Supercritical Power Plant

被引:27
作者
Cheng, Chuanliang [1 ]
Peng, Chen [1 ]
Zhang, Tengfei [2 ,3 ]
机构
[1] Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200444, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing 210023, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Coll Artificial Intelligence, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Power generation; Autoregressive processes; Predictive control; Predictive models; Boilers; Data models; Fuzzy k-mean cluster; generalized predictive control (GPC); nonlinear controller; ultra supercritical (USC) power plant;
D O I
10.1109/TII.2020.3020259
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article proposes a fuzzy k-means cluster based generalized predictive control (GPC) method for a 1000 MW ultra supercritical power plant to improve of the boiler combustion efficiency. First, to fully use the statistic characteristic of the historical data, a fuzzy k-mean cluster network (FKN) is well constructed to derive the local linear models, and the nonlinear dynamic process of studied system is elaborately approximated by the fuzzy combination of the local linear models. Then, a global GPC method is proposed to improve the control performance by using the membership of the current FKN. Different from the traditional GPC, the advantage of proposed GPC is that local GPC is fuzzily combined together to achieve the purpose of global GPC by a scheduling algorithm. Finally, an example illustrates that the proposed control strategy can achieve the satisfactory performance.
引用
收藏
页码:4575 / 4583
页数:9
相关论文
共 29 条
[1]   K-Means clustering technique applied to availability of micro hydro power [J].
Adhau, S. P. ;
Moharil, R. M. ;
Adhau, P. G. .
SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2014, 8 :191-201
[2]   PID control system analysis, design, and technology [J].
Ang, KH ;
Chong, G ;
Li, Y .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2005, 13 (04) :559-576
[3]  
Blevins T, 2014, P AMER CONTR CONF, P790, DOI 10.1109/ACC.2014.6858597
[4]   GENERALIZED PREDICTIVE CONTROL .1. THE BASIC ALGORITHM [J].
CLARKE, DW ;
MOHTADI, C ;
TUFFS, PS .
AUTOMATICA, 1987, 23 (02) :137-148
[5]   GENERALIZED PREDICTIVE CONTROL .2. EXTENSIONS AND INTERPRETATIONS [J].
CLARKE, DW ;
MOHTADI, C ;
TUFFS, PS .
AUTOMATICA, 1987, 23 (02) :149-160
[6]   Multiagent System-Based Event-Triggered Hybrid Controls for High-Security Hybrid Energy Generation Systems [J].
Dou, Chunxia ;
Yue, Dong ;
Guerrero, Josep M. .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2017, 13 (02) :584-594
[7]   Data-Driven Multiobjective Predictive Control for Wastewater Treatment Process [J].
Han, Honggui ;
Liu, Zheng ;
Hou, Ying ;
Qiao, Junfei .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (04) :2767-2775
[8]   MULTIVARIABLE GENERALIZED PREDICTIVE CONTROL OF A BOILER SYSTEM [J].
HOGG, BW ;
ELRABAIE, NM .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 1991, 6 (02) :282-288
[10]   Neural network modelling of a 200MW boiler system [J].
Irwin, G ;
Brown, M ;
Hogg, B ;
Swidenbank, E .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1995, 142 (06) :529-536