Decoherence of a Hadamard basis state in three-spin system: The case of tunnel-couplings to semi-infinite graphene electrodes with armchair edges

被引:2
作者
Kim, Chang-Il [1 ]
Kim, Nam-Chol [1 ]
Yun, Chol-Song [1 ]
Kang, Chol-Jin [1 ]
机构
[1] State Acad Sci, Inst Phys, Unjong Dist, Pyongyang, North Korea
关键词
Three -spin system; Graphene electrode; Armchair edge; Hadamard basis; Decoherence; QUANTUM PHASE-TRANSITION; SPIN; DOT;
D O I
10.1016/j.physleta.2022.128474
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the model of three-spin system consisting of a spin-1/2 quantum dot and two spin-1 particles. The three-spin system has two quantum states under the condition of isotropic exchange interaction, in which each of the states is corresponding to Bloch vector's pole and the control of these ones by the coherent manipulation yields another Hadamard basis state on the Bloch sphere. The purpose of this work is to clarify decoherence of a Hadamard basis state in the case that the system is tunnel -coupled to semi-infinite graphene electrodes with armchair edges. The results show that decay rate of a Hadamard basis state due to interaction with graphene electrodes is much smaller than that of metallic electrodes, and depends weakly on bias voltage. In addition, with the decrease of hybridization width, decoherence shows the transition from exponential decay to non-exponential one. Contrary to these features, decoherence of a Hadamard basis state undergoes the short-time dynamics for tunnel-couplings to zigzag edges.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文
共 34 条
[1]   Electronic states of graphene nanoribbons studied with the Dirac equation [J].
Brey, L ;
Fertig, HA .
PHYSICAL REVIEW B, 2006, 73 (23)
[2]   Anderson impurity in pseudo-gap Fermi systems [J].
Bulla, R ;
Pruschke, T ;
Hewson, AC .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (47) :10463-10474
[3]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[4]   Phase boundaries of power-law Anderson and Kondo models: A poor man's scaling study [J].
Cheng, Mengxing ;
Chowdhury, Tathagata ;
Mohammed, Aaron ;
Ingersent, Kevin .
PHYSICAL REVIEW B, 2017, 96 (04)
[5]   Quantum phase transitions in a pseudogap Anderson-Holstein model [J].
Cheng, Mengxing ;
Ingersent, Kevin .
PHYSICAL REVIEW B, 2013, 87 (07)
[6]  
Diniz GS, 2017, Arxiv, DOI arXiv:1710.01617
[7]  
Elzerman JM, 2004, NATURE, V430, P431, DOI 10.1039/nature02693
[8]   Coherent control of three-spin states in a triple quantum dot [J].
Gaudreau, L. ;
Granger, G. ;
Kam, A. ;
Aers, G. C. ;
Studenikin, S. A. ;
Zawadzki, P. ;
Pioro-Ladriere, M. ;
Wasilewski, Z. R. ;
Sachrajda, A. S. .
NATURE PHYSICS, 2012, 8 (01) :54-58
[9]   Spins in few-electron quantum dots [J].
Hanson, R. ;
Kouwenhoven, L. P. ;
Petta, J. R. ;
Tarucha, S. ;
Vandersypen, L. M. K. .
REVIEWS OF MODERN PHYSICS, 2007, 79 (04) :1217-1265
[10]   Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates [J].
Hanson, R ;
van Beveren, LHW ;
Vink, IT ;
Elzerman, JM ;
Naber, WJM ;
Koppens, FHL ;
Kouwenhoven, LP ;
Vandersypen, LMK .
PHYSICAL REVIEW LETTERS, 2005, 94 (19)