Periodic solutions for n-dimensional generalized Lienard type p-Laplacian functional differential system

被引:3
作者
Gao, F. B. [1 ]
Zhang, W. [1 ]
Lai, S. K. [2 ]
Chen, S. P. [1 ,3 ]
机构
[1] Beijing Univ Technol, Coll Mech Engn, Beijing 100124, Peoples R China
[2] Univ Western Sydney, Sch Engn, Penrith, NSW 1797, Australia
[3] Taizhou Univ, Coll Math & Informat Engn, Linhai 317000, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Degree theory; Periodic solutions; p-Laplacian; Differential system; DEVIATING ARGUMENTS; EXISTENCE; EQUATION;
D O I
10.1016/j.na.2009.05.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the n-dimensional generalized Lienard system d/dt phi(p) [x(t) - Cx(t - tau))'] + d/dt Delta F(x(t - tau)) + del G(x(t - delta(t))) = e(t) driven by the scalar p-Laplacian, C is an n x n symmetric matrix of constants. Using the degree theory, we establish some criteria to guarantee the existence of periodic solutions for the above system, which generalize and improve on the corresponding results in the related literature. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5906 / 5914
页数:9
相关论文
共 17 条
[1]   Periodic solutions for second order differential inclusions with the scalar p-Laplacian [J].
Aizicovici, Sergiu ;
Papageorgiou, Nikolaos S. ;
Staicu, Vasile .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (02) :913-929
[2]  
Amster P, 2006, DYNAM CONT DIS SER A, V13, P311
[3]  
[Anonymous], J SYSTEMS SCI MATH S
[4]   Periodic solutions for p-Laplacian neutral Lienard equation with a sign-variable coefficient [J].
Gao, Fabao ;
Lu, Shiping ;
Zhang, Wei .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2009, 346 (01) :57-64
[5]   Existence of periodic solutions for a Lienard type p-Laplacian differential equation with a deviating argument [J].
Gao, Fabao ;
Lu, Shiping .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (12) :4754-4763
[6]   A p-Laplacian problem with a multi-point boundary condition [J].
García-Huidobro, M ;
Manásevich, R ;
Yan, P ;
Zhang, MR .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (03) :319-333
[7]  
GE WG, 1991, NONLINEAR ANAL-THEOR, V16, P183
[8]   An extension of Mawhin's continuation theorem and its application to boundary value problems with a p-Laplacain [J].
Ge, WG ;
Ren, JL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 58 (3-4) :477-488
[9]  
HUANG XK, 1999, J SYS SCI MATH SCIS, V19, P328
[10]   Periodic solutions to a second order p-Laplacian neutral functional differential system [J].
Lu, Shiping .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (11) :4215-4229