Direct observation of intermediates in the SufS cysteine desulfurase reaction reveals functional roles of conserved active-site residues

被引:25
作者
Blahut, Matthew [1 ]
Wise, Courtney E. [1 ]
Bruno, Michael R. [2 ]
Dong, Guangchao [1 ]
Makris, Thomas M. [1 ]
Frantom, Patrick A. [2 ]
Dunkle, Jack A. [2 ]
Outten, F. Wayne [1 ]
机构
[1] Univ South Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA
[2] Univ Alabama, Dept Chem & Biochem, Tuscaloosa, AL 35487 USA
基金
美国国家卫生研究院;
关键词
X-ray crystallography; iron-sulfur protein; pre-steady-state kinetics; enzyme catalysis; enzyme mechanism; cysteine desulfurase; cysteine sulfur bond cleavage; PLP; PLP-dependent sulfur abstraction; SufS; FE-S CLUSTER; ESCHERICHIA-COLI COUNTERPART; LYASE C-DES; SELENOCYSTEINE LYASE; QUINONOID INTERMEDIATE; GENE CLONING; SULFUR; MECHANISM; PROTEIN; BIOGENESIS;
D O I
10.1074/jbc.RA119.009471
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Iron-sulfur (Fe-S) clusters are necessary for the proper functioning of numerous metalloproteins. Fe-S cluster (Isc) and sulfur utilization factor (Suf) pathways are the key biosynthetic routes responsible for generating these Fe-S cluster prosthetic groups in Escherichia coli. Although Isc dominates under normal conditions, Suf takes over during periods of iron depletion and oxidative stress. Sulfur acquisition via these systems relies on the ability to remove sulfur from free cysteine using a cysteine desulfurase mechanism. In the Suf pathway, the dimeric SufS protein uses the cofactor pyridoxal 5 '-phosphate (PLP) to abstract sulfur from free cysteine, resulting in the production of alanine and persulfide. Despite much progress, the stepwise mechanism by which this PLP-dependent enzyme operates remains unclear. Here, using rapid-mixing kinetics in conjunction with X-ray crystallography, we analyzed the pre-steady-state kinetics of this process while assigning early intermediates of the mechanism. We employed H123A and C364A SufS variants to trap Cys-aldimine and Cys-ketimine intermediates of the cysteine desulfurase reaction, enabling direct observations of these intermediates and associated conformational changes of the SufS active site. Of note, we propose that Cys-364 is essential for positioning the Cys-aldimine for C alpha deprotonation, His-123 acts to protonate the Ala-enamine intermediate, and Arg-56 facilitates catalysis by hydrogen bonding with the sulfhydryl of Cys-aldimine. Our results, along with previous SufS structural findings, suggest a detailed model of the SufS-catalyzed reaction from Cys binding to C-S bond cleavage and indicate that Arg-56, His-123, and Cys-364 are critical SufS residues in this C-S bond cleavage pathway.
引用
收藏
页码:12444 / 12458
页数:15
相关论文
共 44 条
  • [11] Iron-sulfur clusters: ever-expanding roles
    Fontecave, M
    [J]. NATURE CHEMICAL BIOLOGY, 2006, 2 (04) : 171 - 174
  • [12] Mechanisms of iron-sulfur cluster assembly: the SUF machinery
    Fontecave, M
    de Choudens, SO
    Py, B
    Barras, F
    [J]. JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2005, 10 (07): : 713 - 721
  • [13] Structure of a NifS homologue:: X-ray structure analysis of CsdB, an Escherichia coli counterpart of mammalian selenocysteine lyase
    Fujii, T
    Maeda, M
    Mihara, H
    Kurihara, T
    Esaki, N
    Hata, Y
    [J]. BIOCHEMISTRY, 2000, 39 (06) : 1263 - 1273
  • [14] Mechanism-Based Trapping of the Quinonoid Intermediate by Using the K276R Mutant of PLP-Dependent 3-Aminobenzoate Synthase PctV in the Biosynthesis of Pactamycin
    Hirayama, Akane
    Miyanaga, Akimasa
    Kudo, Fumitaka
    Eguchi, Tadashi
    [J]. CHEMBIOCHEM, 2015, 16 (17) : 2484 - 2490
  • [15] Snapshots of the cystine lyase C-DES during catalysis - Studies in solution and in the crystalline state
    Kaiser, JT
    Bruno, S
    Clausen, T
    Huber, R
    Schiaretti, F
    Mozzarelli, A
    Kessler, D
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (01) : 357 - 365
  • [16] Detection of a gem-diamine and a stable quinonoid intermediate in the reaction catalyzed by serine-glyoxylate aminotransferase from Hyphomicrobium methylovorum
    Karsten, William E.
    Cook, Paul F.
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2009, 1790 (06): : 575 - 580
  • [17] Changes in Protein Dynamics in Escherichia coli SufS Reveal a Possible Conserved Regulatory Mechanism in Type II Cysteine Desulfurase Systems
    Kim, Dokyong
    Singh, Harsimran
    Dai, Yuyuan
    Dong, Guangchao
    Busenlehner, Laura S.
    Outten, F. Wayne
    Frantom, Patrick A.
    [J]. BIOCHEMISTRY, 2018, 57 (35) : 5210 - 5217
  • [18] Structural Changes during Cysteine Desulfurase CsdA and Sulfur Acceptor CsdE Interactions Provide Insight into the trans-Persulfuration
    Kim, Sunmin
    Park, SangYoun
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (38) : 27172 - 27180
  • [19] SufE transfers sulfur from SufS to SufB for iron-sulfur cluster assembly
    Layer, Gunhild
    Gaddam, S. Aparna
    Ayala-Castro, Carla N.
    Ollagnier-de Choudens, Sandrine
    Lascoux, David
    Fontecave, Marc
    Outten, F. Wayne
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (18) : 13342 - 13350
  • [20] Current Advances on Structure-Function Relationships o Pyridoxal 5′-Phosphate-Dependent Enzymes
    Liang, Jing
    Han, Qian
    Tan, Yang
    Ding, Haizhen
    Li, Jianyong
    [J]. FRONTIERS IN MOLECULAR BIOSCIENCES, 2019, 6