Phenomena and mechanism of electric charges on spacers in gas insulated switchgears

被引:97
作者
Okabe, Shigemitsu [1 ]
机构
[1] Tokyo Elect Power Co Ltd, High Voltage & Insulat Grp, R&D Ctr, Tsurumi Ku, Yokohama, Kanagawa 2308510, Japan
关键词
electric charging; spacer; volume-conductance; surface-conductance; electric field emission; charging time; particle;
D O I
10.1109/TDEI.2007.302871
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The phenomenon of accumulated charges on solid insulator surfaces is one of the critical parameters to consider at the insulation design stage, for ac electric power equipment as well as for dc equipment, so it is important to investigate the characteristics and predominant factors underlying various charging mechanisms. Several researches related to this theme have been reported, but independently, and cross-sectional comparison and evaluation from a unified viewpoint are meaningful. In this paper, the resistance of solid insulator is first discussed, showing that the resistances found by diverse measurements are in a fairly good agreement under similar conditions of the temperature and electric field. Next, three kinds of electric charging mechanisms, i.e. volume conduction, surface conduction and electric field emission are characterized in terms of the time constant, applied voltage and charge distribution. Then, eight cases of recent measurements on the charging time are investigated and their charging mechanisms are classified. Electric field emissions are likely to occur with model spacers made in routine GIS manufacturing process at the electric field level used. Further, three examples in cases with metallic particles are introduced, of simulating charge from edge on the tank, spacer surface charging phenomena, and influence of charge on spacer surface flashover. It is expected that this paper will be helpful for understanding charging phenomena e.g. on insulation spacers in gas insulated switchgears.
引用
收藏
页码:46 / 52
页数:7
相关论文
共 12 条
[1]  
ENDO F, 1981, COMMUNICATION
[2]  
FUJINAMI H, 1987, IEE JAP TECH M SWITC
[3]  
Imano A. M., 2000, Conference Record of the 2000 IEEE International Symposium on Electrical Insulation (Cat. No.00CH37075), P296, DOI 10.1109/ELINSL.2000.845511
[4]   Charge distribution measurement on a truncated cone spacer under dc voltage [J].
Kumada, A ;
Okabe, S .
IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2004, 11 (06) :929-938
[5]  
KUMADA A, 2005, 14 ISH
[6]   Surface charge accumulation-on HVDC-GIS-Spacer [J].
Messerer, F ;
Finkel, M ;
Boeck, W .
CONFERENCE RECORD OF THE 2002 IEEE INTERNATIONAL SYMPOSIUM ON ELECTRICAL INSULATION, 2002, :421-425
[7]   SURFACE CHARGING ON EPOXY SPACER AT DC STRESS IN COMPRESSED SF6 GAS [J].
NAKANISHI, K ;
YOSHIOKA, A ;
ARAHATA, Y ;
SHIBUYA, Y .
IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1983, 102 (12) :3919-3927
[8]  
OKABE S, 1999, UNPUB
[9]  
OKABE S, 2001, 1I ISH, V4, P351
[10]  
OKABE S, 2000, 10 AS C EL DISCH F, V614, P383