The optimization of state of charge and state of health estimation for lithium-ions battery using combined deep learning and Kalman filter methods

被引:22
|
作者
Shi, Yu [1 ]
Ahmad, Shakeel [1 ]
Tong, Qing [2 ]
Lim, Tuti M. [3 ]
Wei, Zhongbao [4 ]
Ji, Dongxu [5 ]
Eze, Chika M. [1 ]
Zhao, Jiyun [1 ]
机构
[1] City Univ Hong Kong, Dept Mech Engn, Kowloon, 83 Tat Chee Ave, Hong Kong, Peoples R China
[2] Tsinghua Univ, Inst Energy Environm & Econ, Beijing, Peoples R China
[3] Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore, Singapore
[4] Beijing Inst Technol, Sch Mech Engn, Natl Engn Lab Elect Vehicles, Beijing, Peoples R China
[5] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen, Peoples R China
关键词
capacity; deep learning; extended Kalman filter; lithium‐ ion battery; state of charge; temperature; OF-CHARGE; NEURAL-NETWORKS; ONLINE ESTIMATION; CAPACITY; MODEL; TEMPERATURE; RESISTANCE;
D O I
10.1002/er.6601
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
An accurate estimate of the battery state of charge and state of health is critical to ensure the lithium-ion battery's efficiency and safety. The equivalent circuit model-based methods and data-driven models show the potential for robust estimation. However, the state of charge and state of health estimation system's performance with a parallel comparison has been rarely investigated. In this study, the performances of state of charge and state of health with equivalent circuit model-based methods and data-driven estimations are analyzed by different aged and capacity batteries through methods including extended Kalman filters, fully connected deep network with drop methods, and the combination (extended Kalman filters-fully connected deep network with drop methods). Besides the battery state of the voltage and current, the relationship between inner resistance, temperature, and capacity are also considered. Finally, a suggested method is promising for online state estimation of battery working at different temperatures and initial working state. The results indicate that the maximum state of charge estimation errors of the fully connected deep network with drop methods is 0.56% for the fully charged battery. Simultaneously, with an uncertain initial state of charge, the extended Kalman filter shows the lowest maximum state of charge estimation errors (1.4%). For the state of health estimation, the optimized method uses extended Kalman filters to do the monitor first; after 5 testing points, if the state of health drops to lower than 0.95, extended Kalman filters-fully connected deep network with drop methods is suggested. And finally, estimation errors for this method decreased from 30% to 2%.
引用
收藏
页码:11206 / 11230
页数:25
相关论文
共 50 条
  • [41] Adaptive Kalman filter based state of charge estimation algorithm for lithium-ion battery
    Zheng Hong
    Liu Xu
    Wei Min
    CHINESE PHYSICS B, 2015, 24 (09)
  • [42] A Quantum Particle Swarm Optimization Extended Kalman Quantum Particle Filter approach on state of charge estimation for lithium-ion battery
    Liang, Chen
    Xia, Bizhong
    Yue, Shuxuan
    Zhang, Fan
    Qu, Liuxin
    Wang, Shengyi
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [43] State of Charge Estimation Using Extended Kalman Filters for Battery Management System
    Taborelli, Carlo
    Onori, Simona
    2014 IEEE INTERNATIONAL ELECTRIC VEHICLE CONFERENCE (IEVC), 2014,
  • [44] State-of-charge Estimation of Lithium-ion Batteries Using Extended Kalman Filter
    Rezoug, Mohamed Redha
    Taibi, Djamel
    Benaouadj, Mahdi
    2021 10TH INTERNATIONAL CONFERENCE ON POWER SCIENCE AND ENGINEERING (ICPSE 2021), 2021, : 98 - 103
  • [45] Online state of charge estimation for the aerial lithium-ion battery packs based on the improved extended Kalman filter method
    Wang, Shunli
    Fernandez, Carlos
    Shang, Liping
    Li, Zhanfeng
    Li, Jianchao
    JOURNAL OF ENERGY STORAGE, 2017, 9 : 69 - 83
  • [46] State of Charge Estimation Using the Extended Kalman Filter for Battery Management Systems Based on the ARX Battery Model
    Yuan, Shifei
    Wu, Hongjie
    Yin, Chengliang
    ENERGIES, 2013, 6 (01) : 444 - 470
  • [47] State-of-charge Estimation for Lithium-ion Battery using a Combined Method
    Li, Guidan
    Peng, Kai
    Li, Bin
    JOURNAL OF POWER ELECTRONICS, 2018, 18 (01) : 129 - 136
  • [48] Combined State of Charge and State of Energy Estimation of Lithium-Ion Battery Using Dual Forgetting Factor-Based Adaptive Extended Kalman Filter for Electric Vehicle Applications
    Shrivastava, Prashant
    Kok Soon, Tey
    Bin Idris, Mohd Yamani Idna
    Mekhilef, Saad
    Adnan, Syed Bahari Ramadzan Syed
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (02) : 1200 - 1215
  • [49] Deep learning enabled state of charge, state of health and remaining useful life estimation for smart battery management system: Methods, implementations, issues and prospects
    Lipu, M. S. Hossain
    Ansari, Shaheer
    Miah, Md Sazal
    Meraj, Sheikh T.
    Hasan, Kamrul
    Shihavuddin, A. S. M.
    Hannan, M. A.
    Muttaqi, Kashem M.
    Hussain, Aini
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [50] State of charge estimation using extended kalman filter
    Mazzi, Yahia
    Ben Sassi, Hicham
    Errahimi, Fatima
    Es-Sbai, Najia
    2019 INTERNATIONAL CONFERENCE ON WIRELESS TECHNOLOGIES, EMBEDDED AND INTELLIGENT SYSTEMS (WITS), 2019,