CO2 Capture by Supported Ionic Liquid Phase: Highlighting the Role of the Particle Size

被引:28
|
作者
Santiago, Ruben [1 ]
Lemus, Jesus [1 ]
Hospital-Benito, Daniel [1 ]
Moya, Cristian [1 ]
Bedia, Jorge [1 ]
Alonso-Morales, Noelia [1 ]
Rodriguez, Juan J. [1 ]
Palomar, Jose [1 ]
机构
[1] Univ Autonoma Madrid, Chem Engn Dept, C Francisco Torris & Valiente 7, E-28049 Madrid, Spain
关键词
CO2; capture; Ionic liquids; SILP; Fixed-bed; Particle size; Kinetics; HETEROCYCLIC ANION AHA; CARBON CAPTURE; ADSORPTION; SOLUBILITY; KINETICS; THERMODYNAMICS; DIFFUSION; SOLVENTS; DIOXIDE;
D O I
10.1021/acssuschemeng.9b02277
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CO2 capture by fixed-bed sorption has been evaluated using Supported Ionic Liquid Phase (SILP) based on the ionic liquid 1-butyl-3-methylimidazolium acetate ([bmim][acetate]). The SILP sorbent was prepared with three remarkably different mean particle sizes and characterized by porous texture, morphology, thermal stability, and elemental composition. The thermodynamics and kinetics of the CO2 capture process has been studied, testing the effects of SILP particle size, sorption temperature, gas flow rate, and CO2 partial pressure. The CO2 sorption isotherms at different temperatures were obtained by gravimetric measurements, revealing that the equilibrium sorption capacity is only due to the IL incorporated on the silica support of SILP. The experimental isotherms were successfully fitted to the Langmuir-Freundlich model. Fixed-bed experiments of CO2 capture were carried out to evaluate the performance of the SILP sorbents at different operating conditions. All the breakthrough curves were well described by a linear driving force model. The obtained kinetic coefficients revealed that the CO2 sorption rate in fixed-bed linearly increases when decreasing the SILP particle size and increasing the operating temperature. Higher CO(2 )partial pressure in the inlet gas stream led to a faster mass transfer rate, affecting both the mass transfer driving force and kinetic coefficient. Aspen Adsorption simulator was successfully applied to model the fixed-bed operation, highlighting the role of the particle size on separation efficiency. Simulations results indicate that at very low CO2 partial pressure chemical absorption is the controlling step, while increasing that partial pressure shifts the regime toward diffusion into the SILP. This methodology will allow designing CO2 sorption systems based on SILPs that fulfill the separation requirements at given conditions (CO2 partial pressure and temperature), minimizing the SILP needs by optimizing the particle size and type of IL.
引用
收藏
页码:13089 / 13097
页数:17
相关论文
共 50 条
  • [41] The Research Progress of CO2 Capture with Ionic Liquids
    Zhao Zhijun
    Dong Haifeng
    Zhang Xiangping
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2012, 20 (01) : 120 - 129
  • [42] Progress and Development of Capture for CO2 by Ionic Liquids
    Zhang, L.
    Chen, J.
    Lv, J. X.
    Wang, S. F.
    Cui, Y.
    ASIAN JOURNAL OF CHEMISTRY, 2013, 25 (05) : 2355 - 2358
  • [43] A review of encapsulated ionic liquids for CO2 capture
    Solangi, Nadeem Hussain
    Hussin, Farihahusnah
    Anjum, Amna
    Sabzoi, Nizamuddin
    Mazari, Shaukat Ali
    Mubarak, Nabisab Mujawar
    Aroua, Mohamed Kheireddine
    Siddiqui, M. T. H.
    Qureshi, Sundus Saeed
    JOURNAL OF MOLECULAR LIQUIDS, 2023, 374
  • [44] Prediction of CO2 chemical absorption isotherms for ionic liquid design by DFT/COSMO-RS calculations
    Moya, Cristian
    Hospital-Benito, Daniel
    Santiago, Ruben
    Lemus, Jesus
    Palomar, Jose
    CHEMICAL ENGINEERING JOURNAL ADVANCES, 2020, 4
  • [45] Novel ionic liquids phase change solvents for CO2 capture
    Zhou, Haicheng
    Xu, Xin
    Chen, Xiaochun
    Yu, Guangren
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2020, 98
  • [46] Mass transfer and reaction mechanism of CO2 capture into a novel amino acid ionic liquid phase-change absorbent
    Song, Tao
    Chen, Weiqi
    Zhang, Yuchi
    Situ, Gaohua
    Liu, Fan
    Shen, Yao
    Kong, Weixin
    Zhong, Xinling
    Huang, Yan
    Li, Shuifei
    Yang, Lin
    Zhang, Shihan
    Li, Sujing
    Li, Wei
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 330
  • [47] Mixtures of Cellulose Fibers from Pineapple Leaves, Ionic Liquid, and Alkanolamines for CO2 Capture
    Agudelo Hernandez, Maria Fernanda
    Fernandez Rojas, Marisol
    Bernard, Franciele
    Einloft, Sandra
    Carreno Diaz, Luz Angela
    FIBERS AND POLYMERS, 2020, 21 (12) : 2861 - 2872
  • [48] Amine-Ionic Liquid Blends in CO2 Capture Process for Sustainable Energy and Environment
    Perumal, Muthumari
    Jayaraman, Dhanalakshmi
    ENERGY & ENVIRONMENT, 2023, 34 (03) : 517 - 532
  • [49] Biobased ionic liquid solutions for an efficient post-combustion CO2 capture system
    Cannone, Salvatore F.
    Tawil, Michel
    Bocchini, Sergio
    Santarelli, Massimo
    CARBON CAPTURE SCIENCE & TECHNOLOGY, 2024, 13
  • [50] Recyclability of Encapsulated Ionic Liquids for Post-Combustion CO2 Capture
    Song, Tangqiumei
    Bonilla, Gabriela M. Avelar
    Morales-Collazo, Oscar
    Lubben, Michael J.
    Brennecke, Joan F.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (12) : 4997 - 5007