Efficient Dispersants for TiO2 Nanopowder in Organic Suspensions

被引:28
|
作者
Kuo, Ming-Shu [1 ]
Chang, Shinn-Jen [2 ]
Hsieh, Ping-Hsun [3 ]
Huang, Yuan-Chang [3 ]
Li, Chia-Chen [1 ]
机构
[1] Natl Taipei Univ Technol, Inst Mat Sci & Engn, Dept Mat & Mineral Resources Engn, Taipei 10608, Taiwan
[2] Ind Technol Res Inst, Mat & Chem Res Labs, Hsinchu 30011, Taiwan
[3] Evonik Taiwan Ltd, Taipei 10596, Taiwan
关键词
TITANIUM-DIOXIDE; SURFACE-CHEMISTRY; RUTILE; NANOPARTICLES; SPECTROSCOPY; SILICA; CHARGE; XPS;
D O I
10.1111/jace.14009
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This article discusses the appropriate dispersant for titania (TiO2) nanopowder in organic-based suspensions. Four types of oleyl-based dispersants, namely, oleyl alcohol, oleic acid, oleylamine, and oleyl phosphate, which have the functional groups hydroxyl (-OH), carboxyl (-COOH), amino (-NH2), and phosphorous [-P(=O)(OH)(2)], respectively, were compared for their ability to disperse TiO2. Experimental results for zeta potential, adsorption, FT-IR spectroscopy, and rheology, as well as theoretical calculations, indicate that dispersants with -P(=O)(OH)(2) and -NH2 were more efficient than those with -COOH or -OH. The primary reason for this difference is related to the different interactions of TiO2 with various dispersants and to different dispersion mechanisms. In addition to the major functional groups, -OH in the chemical structure of dispersants was important, as it might have other effects such as destabilization of the suspensions.
引用
收藏
页码:445 / 451
页数:7
相关论文
共 50 条
  • [31] Rheological behavior of TiO2/water suspensions
    Yang, Huagui
    Gao, Piying
    Gu, Hongchen
    Fang, Tunan
    Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2000, 15 (03): : 431 - 436
  • [32] Evaluation of nanoparticle emission for TiO2 nanopowder coating materials
    Hsu, Li-Yeh
    Chein, Hung-Min
    JOURNAL OF NANOPARTICLE RESEARCH, 2007, 9 (01) : 157 - 163
  • [33] Study of nanocrystalline TiO2 prepared with raw and modified gelatin dispersants
    Liu, XH
    Wang, HZ
    Chen, DY
    Wang, Y
    Lu, LD
    Wang, X
    JOURNAL OF APPLIED POLYMER SCIENCE, 1999, 73 (13) : 2569 - 2574
  • [34] Improving the Stability of TiO2 Aqueous Suspensions by Coupling TiO2 Nanoparticles on ZrP Nanoplatelets
    Liu, Zhuowei
    Yin, Tao
    Chen, Ying
    Cheng, Zhengdong
    Mo, Songping
    Jia, Lisi
    CLEAN, EFFICIENT AND AFFORDABLE ENERGY FOR A SUSTAINABLE FUTURE, 2015, 75 : 2199 - 2204
  • [35] Photocatalytic properties of electric-explosion-produced TiO2 nanopowder
    Voronova, G.A.
    Fedotova, M.P.
    Emel'Yanova, E.Yu.
    Vodyankina, O.V.
    Russian Journal of Applied Chemistry, 2009, 82 (08): : 1351 - 1356
  • [36] Photoactive TiO2 Nanopowder Synthesized at Low Temperature without a Catalyst
    Nikkanen, J. -P.
    Huttunen-Saarivirta, E.
    Kanerva, T.
    Pore, V.
    Kivela, T.
    Lelanen, E.
    Mantyla, T.
    JOURNAL OF CERAMIC SCIENCE AND TECHNOLOGY, 2011, 2 (02): : 97 - 102
  • [37] Sol–gel nanocoating on commercial TiO2 nanopowder using ultrasound
    Quan Chen
    Chris Boothroyd
    Andrew Mcintosh Soutar
    Xian Ting Zeng
    Journal of Sol-Gel Science and Technology, 2010, 53 : 115 - 120
  • [38] Immobilization of photocatalytically active TiO2 nanopowder by high shear granulation
    Goedecke, Caroline
    Sojref, Regine
    Thi Yen Nguyen
    Piechotta, Christian
    POWDER TECHNOLOGY, 2017, 318 : 465 - 470
  • [39] Photocatalytic Activity of Microwave Plasma-Synthesized TiO2 Nanopowder
    Kumar, S. Mahendra
    Deshpande, Parag A.
    Krishna, M.
    Krupashankara, M. S.
    Madras, Giridhar
    PLASMA CHEMISTRY AND PLASMA PROCESSING, 2010, 30 (04) : 461 - 470
  • [40] Degradation of petroleum aromatic hydrocarbons using TiO2 nanopowder film
    Fard, Mohammad Alizadeh
    Aminzadeh, Behnoush
    Vahidi, Hossein
    ENVIRONMENTAL TECHNOLOGY, 2013, 34 (09) : 1183 - 1190