Task-related modulation of visual cortex

被引:118
作者
Huk, AC [1 ]
Heeger, DJ [1 ]
机构
[1] Stanford Univ, Dept Psychol, Stanford, CA 94305 USA
关键词
D O I
10.1152/jn.2000.83.6.3525
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We performed a series of experiments to quantify the effects of task performance on cortical activity in early visual areas. Functional magnetic resonance imaging (fMRI) was used to measure cortical activity in several cortical visual areas including primary visual cortex (V1) and the MT complex (MT+) as subjects performed a variety of threshold-level visual psychophysical tasks. Performing speed, direction, and contrast discrimination tasks produced strong modulations of cortical activity. For example, one experiment tested for selective modulations of MT+ activity as subjects alternated between performing contrast and speed discrimination tasks. MT+ responses modulated in phase with the periods of time during which subjects performed the speed discrimination task; that is, MT+ activity was higher during speed discrimination than during contrast discrimination. Task-related modulations were consistent across repeated measurements in each subject; however, significant individual differences were observed between subjects. Together, the results suggest 1) that specific changes in the cognitive/behavioral state of a subject can exert selective and reliable modulations of cortical activity in early visual cortex, even in V1; 2) that there are significant individual differences in these modulations; and 3) that visual areas and pathways that are highly sensitive to small changes in a given stimulus feature (such as contrast or speed) are selectively modulated during discrimination judgments on that feature. Increasing the gain of the relevant neuronal signals in this way may improve their signal-to-noise to help optimize task performance.
引用
收藏
页码:3525 / 3536
页数:12
相关论文
共 79 条
[1]   STRIATE CORTEX OF MONKEY AND CAT - CONTRAST RESPONSE FUNCTION [J].
ALBRECHT, DG ;
HAMILTON, DB .
JOURNAL OF NEUROPHYSIOLOGY, 1982, 48 (01) :217-237
[2]  
[Anonymous], P EUR C COMP VIS ECC
[3]   HUMAN CONTRAST DISCRIMINATION AND THE THRESHOLD OF CORTICAL-NEURONS [J].
BARLOW, HB ;
KAUSHAL, TP ;
HAWKEN, M ;
PARKER, AJ .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1987, 4 (12) :2366-2371
[4]   Graded effects of spatial and featural attention on human area MT and associated motion processing areas [J].
Beauchamp, MS ;
Cox, RW ;
DeYoe, EA .
JOURNAL OF NEUROPHYSIOLOGY, 1997, 78 (01) :516-520
[5]   THE CONSEQUENCES OF INACTIVATING AREAS V1 AND V5 ON VISUAL-MOTION PERCEPTION [J].
BECKERS, G ;
ZEKI, S .
BRAIN, 1995, 118 :49-60
[6]   CEREBRAL VISUAL-MOTION BLINDNESS - TRANSITORY AKINETOPSIA INDUCED BY TRANSCRANIAL MAGNETIC STIMULATION OF HUMAN AREA V5 [J].
BECKERS, G ;
HOMBERG, V .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1992, 249 (1325) :173-178
[7]   The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields [J].
Black, MJ ;
Anandan, P .
COMPUTER VISION AND IMAGE UNDERSTANDING, 1996, 63 (01) :75-104
[8]   Neuronal basis of contrast discrimination [J].
Boynton, GM ;
Demb, JB ;
Glover, GH ;
Heeger, DJ .
VISION RESEARCH, 1999, 39 (02) :257-269
[9]   Linear systems analysis of functional magnetic resonance imaging in human V1 [J].
Boynton, GM ;
Engel, SA ;
Glover, GH ;
Heeger, DJ .
JOURNAL OF NEUROSCIENCE, 1996, 16 (13) :4207-4221
[10]   A physiological correlate of the 'spotlight' of visual attention [J].
Brefczynski, JA ;
DeYoe, EA .
NATURE NEUROSCIENCE, 1999, 2 (04) :370-374