Families of explicit two-step methods for integration of problems with oscillating solutions

被引:2
作者
Tsitouras, C [1 ]
机构
[1] Natl Tech Univ Athens, Math Dept, Fac Sci Appl, GR-15780 Athens, Greece
关键词
explicit Numerov methods; periodic ODEs; phase lag; dissipation; sixth algebraic order;
D O I
10.1016/S0096-3003(01)00322-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a new sixth algebraic order, explicit Numerov-type family of methods. Using every free parameter of the family, even its nodes, we manage to derive two methods. The first with phase-lag of order 12, while the other method has one stage less. This is a considerable improvement over the 10th order phase-lag order methods found in the literature until now. Numerical experiments confirm the superiority of our new methods over older methods. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:169 / 178
页数:10
相关论文
共 15 条
[1]   A NOUMEROV-TYPE METHOD WITH MINIMAL PHASE-LAG FOR THE INTEGRATION OF 2ND-ORDER PERIODIC INITIAL-VALUE PROBLEMS .2. EXPLICIT METHOD [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 15 (03) :329-337
[2]   A NOUMEROV-TYPE METHOD WITH MINIMAL PHASE-LAG FOR THE INTEGRATION OF 2ND ORDER PERIODIC INITIAL-VALUE PROBLEMS [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 11 (03) :277-281
[3]   AN EXPLICIT 6TH-ORDER METHOD WITH PHASE-LAG OF ORDER 8 FOR Y''=F(T, Y) [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1987, 17 (03) :365-368
[4]  
FEHLBERG E, 1972, TRR381 NASA MARS SPA
[5]  
LAMBERT JD, 1976, J I MATH APPL, V18, P189
[6]  
Landau L., 1965, QUANTUM MECH
[7]  
Liboff R.L., 1980, INTRO QUANTUM MECH
[8]   High phase-lag-order Runge-Kutta and Nystrom pairs [J].
Papakostas, SN ;
Tsitouras, C .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02) :747-763
[9]   A P-stable eighth-order method for the numerical integration of periodic initial-value problems [J].
Simos, TE ;
Tsitouras, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 130 (01) :123-128
[10]   EXPLICIT 2-STEP METHODS WITH MINIMAL PHASE-LAG FOR THE NUMERICAL-INTEGRATION OF SPECIAL 2ND-ORDER INITIAL-VALUE PROBLEMS AND THEIR APPLICATION TO THE ONE-DIMENSIONAL SCHRODINGER-EQUATION [J].
SIMOS, TE .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 39 (01) :89-94