Optimizing kernel methods for Poisson integrals on a uniform grid

被引:5
作者
Gabay, D. [1 ]
Boag, A. [1 ]
Natan, A. [1 ,2 ]
机构
[1] Tel Aviv Univ, Dept Phys Elect, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Sackler Ctr Computat Mol & Mat Sci, IL-69978 Tel Aviv, Israel
关键词
Poisson solver; Density-Functional-Theory; Electrostatic potential; Ab-initio; MULTIRESOLUTION QUANTUM-CHEMISTRY; DIFFERENCE-PSEUDOPOTENTIAL METHOD; ELECTRONIC-STRUCTURE CALCULATIONS; DENSITY-FUNCTIONAL THEORY; HARTREE-FOCK; REAL-SPACE; ALGORITHM; EQUATION; SOLVERS;
D O I
10.1016/j.cpc.2017.01.016
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We analyze the error and error propagation in the calculation of the Poisson integral on a uniform grid within Density Functional Theory (DFT) real-space calculations. We suggest and examine several schemes for near neighbors' interaction correction for the Green's function kernel to improve the accuracy. Finally, we demonstrate the effect of the different kernels on DFT eigenvalues and Hartree energy accuracy in systems such as C-60 and C40H82. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 40 条
  • [1] Density functional theory with correct long-range asymptotic behavior
    Baer, R
    Neuhauser, D
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (04)
  • [2] Efficient Computation of the Hartree-Fock Exchange in Real-Space with Projection Operators
    Boffi, Nicholas M.
    Jain, Manish
    Natan, Amir
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (08) : 3614 - 3622
  • [3] Parallel implementation of time-dependent density functional theory
    Burdick, WR
    Saad, Y
    Kronik, L
    Vasiliev, I
    Jain, M
    Chelikowsky, JR
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2003, 156 (01) : 22 - 42
  • [4] Efficient and accurate solver of the three-dimensional screened and unscreened Poisson's equation with generic boundary conditions
    Cerioni, Alessandro
    Genovese, Luigi
    Mirone, Alessandro
    Sole, Vicente Armando
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (13)
  • [5] FINITE-DIFFERENCE-PSEUDOPOTENTIAL METHOD - ELECTRONIC-STRUCTURE CALCULATIONS WITHOUT A BASIS
    CHELIKOWSKY, JR
    TROULLIER, N
    SAAD, Y
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (08) : 1240 - 1243
  • [6] HIGHER-ORDER FINITE-DIFFERENCE PSEUDOPOTENTIAL METHOD - AN APPLICATION TO DIATOMIC-MOLECULES
    CHELIKOWSKY, JR
    TROULLIER, N
    WU, K
    SAAD, Y
    [J]. PHYSICAL REVIEW B, 1994, 50 (16) : 11355 - 11364
  • [7] Adaptive order polynomial algorithm in a multiwavelet representation scheme
    Durdek, Antoine
    Jensen, Stig Rune
    Juselius, Jonas
    Wind, Peter
    Fla, Tor
    Frediani, Luca
    [J]. APPLIED NUMERICAL MATHEMATICS, 2015, 92 : 40 - 53
  • [8] REMARKS ON THE SOLUTION OF POISSONS EQUATION FOR ISOLATED SYSTEMS
    EASTWOOD, JW
    BROWNRIGG, DRK
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 32 (01) : 24 - 38
  • [9] FORNBERG B, 1988, MATH COMPUT, V51, P699, DOI 10.1090/S0025-5718-1988-0935077-0
  • [10] A Survey of the Parallel Performance and Accuracy of Poisson Solvers for Electronic Structure Calculations
    Garcia-Risueno, Pablo
    Alberdi-Rodriguez, Joseba
    Oliveira, Micael J. T.
    Andrade, Xavier
    Pippig, Michael
    Muguerza, Javier
    Arruabarrena, Agustin
    Rubio, Angel
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2014, 35 (06) : 427 - 444