Dynamics of the pendulum with periodically varying length

被引:60
作者
Belyakov, Anton O. [1 ]
Seyranian, Alexander P. [1 ]
Luongo, Angelo [2 ]
机构
[1] Moscow MV Lomonosov State Univ, Inst Mech, Moscow 119192, Russia
[2] Univ Aquila, DISAT, I-67040 Laquila, Italy
关键词
Pendulum of variable length; Regular rotation; Tumbling chaos; Averaging method; Stability of limit cycle; Quasi-linear oscillatory system; STABILITY;
D O I
10.1016/j.physd.2009.04.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Dynamic behavior of a weightless rod with a point mass sliding along the rod axis according to periodic law is studied. This is the pendulum with periodically varying length which is also treated as a simple model of a child's swing. Asymptotic expressions for boundaries of instability domains near resonance frequencies are derived. Domains for oscillation, rotation, and oscillation-rotation motions in parameter space are found analytically and compared with a numerical Study. Chaotic motions of the pendulum depending on problem parameters are investigated numerically. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1589 / 1597
页数:9
相关论文
共 17 条
[1]  
[Anonymous], 1958, Nichtlineare Mechanik
[2]  
BELYAKOV AC, 2008, P 6 EUROMECH NONL DY
[3]  
Bogolyubov N., 1961, Asymptotic Methods in the Theory of Nonlinear Oscillations
[4]  
BOLOTIN VV, 1999, HDB OSCILLATIONS LIN, V1
[5]   Rotating solutions and stability of parametric pendulum by perturbation method [J].
Lenci, S. ;
Pavlovskaia, E. ;
Rega, G. ;
Wiercigroch, M. .
JOURNAL OF SOUND AND VIBRATION, 2008, 310 (1-2) :243-259
[6]  
Magnus K. S., 1976, Eine Einfuhrung in die theoretische Behandlung von Schwingungsproblemen
[7]  
Panovko Ya. G., 1987, STABILITY OSCILLATIO
[8]   Oscillations of a pendulum with a periodically varying length and a model of swing [J].
Pinsky, MA ;
Zevin, AA .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1999, 34 (01) :105-109
[9]   The stability of an inverted pendulum with a vibrating suspension point [J].
Seyranian, A. A. ;
Seyranian, A. P. .
PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2006, 70 (05) :754-761
[10]  
Seyranian A.P., 2003, MULTIPARAMETER STABI, V13