SINGULAR SEMIPOSITIVE METRICS IN NON-ARCHIMEDEAN GEOMETRY

被引:47
作者
Boucksom, Sebastien [1 ,2 ]
Favre, Charles [2 ]
Jonsson, Mattias [3 ]
机构
[1] Univ Paris 06, CNRS, Inst Math, F-75251 Paris 05, France
[2] Ecole Polytech, CNRS, CMLS, F-91128 Palaiseau, France
[3] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
ASYMPTOTIC INVARIANTS; BERKOVICH SPACES; VALUATIONS; VARIETIES; HEIGHTS; IDEALS;
D O I
10.1090/jag/656
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a smooth projective Berkovich space over a complete discrete valuation field K of residue characteristic zero, endowed with an ample line bundle L. We introduce a general notion of (possibly singular) semipositive (or plurisubharmonic) metrics on L and prove the analogue of the following two basic results in the complex case: the set of semipositive metrics is compact modulo scaling, and each semipositive metric is a decreasing limit of smooth semipositive ones. In particular, for continuous metrics, our definition agrees with the one by S.-W. Zhang. The proofs use multiplier ideals and the construction of suitable models of X over the valuation ring of K, using toroidal techniques.
引用
收藏
页码:77 / 139
页数:63
相关论文
共 74 条
[1]  
[Anonymous], NONARCHIMEDEAN UNPUB
[2]  
[Anonymous], SEMINAIRE BOURBAKI
[3]  
[Anonymous], P SIM S TRO IN PRESS
[4]  
[Anonymous], LECT NOTES MATH
[5]  
[Anonymous], ASTERISQUE
[6]  
[Anonymous], ARXIV12046277
[7]  
[Anonymous], ERGEBNISSE MATH IHRE
[8]  
[Anonymous], 1969, Publ. Math. IHES
[9]  
[Anonymous], EMS SERIES C REPORTS
[10]  
[Anonymous], LECT NOTES MATH