Multivariate statistical process control methods for batch production: a review focused on applications

被引:10
作者
Ramos, Miriam [1 ]
Ascencio, Jose [1 ]
Vanessa Hinojosa, Miriam [1 ]
Vera, Francisco [1 ]
Ruiz, Omar [1 ]
Isabel Jimenez-Feijoo, Maria [1 ]
Galindo, Purificacion [2 ]
机构
[1] ESPOL Polytech Univ, ESPOL, Escuela Super Politecn Litoral, Campus Gustavo Galindo Km 30-5,Via Perimetral, Guayaquil, Ecuador
[2] Univ Salamanca, Dept Estadist, Campus Miguel Unamuno, Salamanca, Spain
来源
PRODUCTION AND MANUFACTURING RESEARCH-AN OPEN ACCESS JOURNAL | 2021年 / 9卷 / 01期
关键词
MSPC; batch; methods; review; applications; PARTIAL LEAST-SQUARES; INDEPENDENT COMPONENT ANALYSIS; PROCESS-CONTROL CHARTS; FAULT-DETECTION; DIAGNOSIS; QUALITY; MODEL; PARAFAC;
D O I
10.1080/21693277.2020.1871441
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we highlight the basic techniques of multivariate statistical process control (MSPC) under the dimensionality criteria, such as Multiway Principal Component Analysis, Multiway Partial Squares, Structuration a Trois Indices de la Statistique, Tucker3, Parallel Factors, Multiway Independent Component Analysis, Multiset Canonical Correlation Analysis, Slow Features Analysis, and Parallel Coordinates. Furthermore, we summarize the procedures of each statistical technique and the usage of multivariate control charts. In addition, we review the most significant proposals and applications in practical cases. Finally, we compare and discuss the benefits and limitations within methods.
引用
收藏
页码:33 / 55
页数:23
相关论文
共 70 条
[1]   STATIS and DISTATIS: optimum multitable principal component analysis and three way metric multidimensional scaling [J].
Abdi, Herve ;
Williams, Lynne J. ;
Valentin, Domininique ;
Bennani-Dosse, Mohammed .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2012, 4 (02) :124-167
[2]   Principal component analysis [J].
Abdi, Herve ;
Williams, Lynne J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04) :433-459
[3]   Partial least squares regression and projection on latent structure regression (PLS Regression) [J].
Abdi, Herve .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (01) :97-106
[4]   Statistical process control charts for batch operations based on independent component analysis [J].
Albazzaz, H ;
Wang, XZ .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2004, 43 (21) :6731-6741
[5]  
[Anonymous], 2009, Parallel Coordinates, DOI DOI 10.1007/978-0-387-68628-8
[6]  
[Anonymous], 2013, EUROGRAPHICS STATE A, DOI [10.2312/conf/EG2013/stars/095-116, DOI 10.2312/CONF/EG2013/STARS/095-116]
[7]  
Bellamy R, 1997, CLIN ORTHOP RELAT R, P2
[8]   Multivariate statistical process control charts: An overview [J].
Bersimis, S. ;
Psarakis, S. ;
Panaretos, J. .
QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2007, 23 (05) :517-543
[9]   ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMENSIONAL SCALING VIA AN N-WAY GENERALIZATION OF ECKART-YOUNG DECOMPOSITION [J].
CARROLL, JD ;
CHANG, JJ .
PSYCHOMETRIKA, 1970, 35 (03) :283-&
[10]  
Chen J, 2008, LECT NOTES ENG COMP, P1298