Prediction of vegetation anomalies over an inland river basin in north-western China

被引:12
作者
Fu, Jing [1 ]
Niu, Jun [1 ]
Sivakumar, Bellie [2 ,3 ,4 ]
机构
[1] China Agr Univ, Ctr Agr Water Res China, Beijing 100083, Peoples R China
[2] Univ New South Wales, Sch Civil & Environm Engn, Sydney, NSW 2052, Australia
[3] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA
[4] Indian Inst Technol, Dept Civil Engn, Powai 400076, India
基金
中国国家自然科学基金;
关键词
ecological environment; inland river basin; statistical model; vegetation index; vegetation responses; NET PRIMARY PRODUCTION; NORMALIZED DIFFERENCE; CLIMATE-CHANGE; LAND DEGRADATION; TREND ANALYSIS; SOIL-MOISTURE; INDEX NDVI; VARIABILITY; DYNAMICS; PRECIPITATION;
D O I
10.1002/hyp.11626
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Vegetation cover plays an important role in linking the atmosphere, water, and land and is deemed as a key indicator in the terrestrial ecological system. Therefore, it is of great importance to monitor vegetation dynamics and understand the mechanisms of vegetation change, including that driven by climate change. This study examines (a) the evolution of vegetation dynamics over the Heihe River Basin in the typical arid zone in north-western China using nonparametric Mann-Kendall test and Thiel Sen's slope; (b) the relationships between remotely sensed vegetation indices (normalized difference vegetation index [NDVI] and enhanced vegetation index [EVI]) and hydroclimatic variables based on correlation analysis; and (c) the prediction of vegetation anomalies using a multiple linear regression model. For the analysis, the Moderate Resolution Imaging Spectroradiometer NDVI/EVI product and the gridded daily meteorological data at a spatial resolution of 0.125 degrees over the period 2001-2010 are considered. The results indicate that vegetation cover improved over a large proportion during 2001-2010, with a significant trend towards warm and wet, characterized by an increase in average annual temperature and precipitation by 0.042 degrees C/year and 5.8mm/year, respectively. We test the feasibility of NDVI and EVI in quantifying the responses of vegetation anomaly to climate change and develop a statistical model to predict vegetation dynamics in the basin. The NDVI-based model is found to be more reliable than the EVI-based model, partly due to the vegetation characteristics and geomorphologic properties of the study region. The proposed model performs well when there is no lag time between meteorological factors and vegetation indices for grassland and cropland, whereas 1-month lead time prediction is found to be best for forest. The soil water content is introduced as an extra explanatory variable, which effectively improves the prediction accuracy for different land use types. In general, the predictive ability of the proposed model is stable and satisfactory, and the model can provide useful early warning information for regional water resources management under changing climate.
引用
收藏
页码:1814 / 1827
页数:14
相关论文
共 47 条
[1]  
[Anonymous], 2016, THESIS
[2]  
[Anonymous], 1975, RANK CORRELATION MEA
[3]   Prediction of vegetation anomalies to improve food security and water management in India [J].
Asoka, Akarsh ;
Mishra, Vimal .
GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (13) :5290-5298
[4]   Can a 25-year trend in Soudano-Sahelian vegetation dynamics be interpreted in terms of land use change? A remote sensing approach [J].
Begue, Agnes ;
Vintrou, Elodie ;
Ruelland, Denis ;
Claden, Maxime ;
Dessay, Nadine .
GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS, 2011, 21 (02) :413-420
[5]   Using satellite based soil moisture to quantify the water driven variability in NDVI: A case study over mainland Australia [J].
Chen, T. ;
de Jeu, R. A. M. ;
Liu, Y. Y. ;
van der Werf, G. R. ;
Dolman, A. J. .
REMOTE SENSING OF ENVIRONMENT, 2014, 140 :330-338
[6]   Fifty-year climate change and its effect on annual runoff in the Tarim River Basin, China [J].
Chen Yaning ;
Xu Changchun ;
Hao Xingming ;
Li Weihong ;
Chen Yapeng ;
Zhu Chenggang ;
Ye Zhaoxia .
QUATERNARY INTERNATIONAL, 2009, 208 :53-61
[7]   Analysis of monotonic greening and browning trends from global NDVI time-series [J].
de Jong, Rogier ;
de Bruin, Sytze ;
de Wit, Allard ;
Schaepman, Michael E. ;
Dent, David L. .
REMOTE SENSING OF ENVIRONMENT, 2011, 115 (02) :692-702
[8]   Seasonal variation of MODIS vegetation indexes and their statistical relationship with climate over the subtropic evergreen forest in Zhejiang, China [J].
Deng, Fangping ;
Su, Gaoli ;
Liu, Chuang .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (02) :236-240
[9]   Intra-seasonal NDVI change projections in semi-arid Africa [J].
Funk, CC ;
Brown, ME .
REMOTE SENSING OF ENVIRONMENT, 2006, 101 (02) :249-256
[10]   Recent trends in vegetation dynamics in the African Sahel and their relationship to climate [J].
Herrmann, SM ;
Anyamba, A ;
Tucker, CJ .
GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS, 2005, 15 (04) :394-404