Typical separating invariants

被引:26
作者
Domokos, M. [1 ]
机构
[1] Hungarian Acad Sci, Renyi Inst Math, H-1364 Budapest, Hungary
关键词
Nonempty Intersection; Rational Invariant; Polynomial Invariant; Zariski Closure; Unipotent Subgroup;
D O I
10.1007/s00031-005-1131-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that a, trivial version of polarization is sufficient to produce separating systems of polynomial invariants: if two points in the direct sum of the G-modules W and m copies of V can be separated by polynomial invariants, then they can be separated by invariants depending only on <= 2 dim(V) variables of type V; when G is reductive, invariants depending only on <= dim(V) + 1 variables suffice. A similar result is valid for rational invariants. Explicit bounds on the number of type V variables in a, complete system of typical separating invariants are given for the binary polyhedral groups, and this is applied to the invariant theory of binary forms.
引用
收藏
页码:49 / 63
页数:15
相关论文
共 15 条
[1]  
[Anonymous], 1939, Classical Groups
[2]   ORBITS OF LINEAR ALGEBRAIC GROUPS [J].
BIRKES, D .
ANNALS OF MATHEMATICS, 1971, 93 (03) :459-&
[3]  
Borel A., 1991, GRADUATE TEXTS MATH, V126
[4]   Independent generating sets and geometries for symmetric groups [J].
Cameron, PJ ;
Cara, P .
JOURNAL OF ALGEBRA, 2002, 258 (02) :641-650
[5]  
Derksen H., 2002, ENCY MATH SCI, V130
[6]  
Domokos M., 2003, Polynomial identities and combinatorial methods (Pantelleria, 2001), P215
[7]  
DRAISMA J, IN PRESS CANAD J MAT
[8]  
Helly E., 1923, JBER DEUT MATH VEREI, V32, P175
[9]  
KHADZHIYEV D, 1978, TEORIYA INVARIANTNOG
[10]   ORBITAL ADHERENCES AND INVARIANTS [J].
LUNA, D .
INVENTIONES MATHEMATICAE, 1975, 29 (03) :231-238