Evolutionary double attention-based long short-term memory model for building energy prediction: Case study of a green building

被引:58
|
作者
Ding, Zhikun [1 ,2 ,3 ]
Chen, Weilin [3 ]
Hu, Ting [3 ]
Xu, Xiaoxiao [4 ]
机构
[1] Shenzhen Univ, Key Lab Coastal Urban Resilient Infrastruct, Shenzhen, Peoples R China
[2] Shenzhen Univ, Sino Australia Joint Res Ctr BIM & Smart Construc, Shenzhen, Peoples R China
[3] Shenzhen Univ, Coll Civil & Transportat Engn, Dept Construct Management & Real Estate, Shenzhen, Peoples R China
[4] Nanjing Forestry Univ, Sch Civil Engn, Nanjing, Peoples R China
关键词
Building energy conservation; Building energy consumption prediction; Attention mechanism; Long short-term memory; Deep learning; SUPPORT VECTOR REGRESSION; NEURAL-NETWORK; CONSUMPTION; SECTOR; PERFORMANCE; SIMULATION; STRATEGIES; PATTERNS; IMPACTS; SINGLE;
D O I
10.1016/j.apenergy.2021.116660
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The prediction of building energy consumption plays a crucial role in building energy management and conservation because it contributes to effective building operation, energy efficiency evaluation, fault detection and diagnosis, and demand side management. Although a large number of energy prediction methods have been proposed, each method has its pros and cons and still exhibits the potential to be improved. This study proposes an evolutionary double attention-based long short-term memory model and introduces binary features by using feature combination. The proposed model is adopted to analyse the building energy consumption data of a green building in Shenzhen, China. The prediction performance of the proposed hybrid model measured via root-mean square-error and mean absolute error are 4.02 and 2.87 respectively, which are evidently better than those of the base models. Results also show that an attention mechanism can improve the efficiency of the long short-term memory algorithm with which the model uses the input time series data. Meanwhile, binary features exert a significant effect on energy consumption. The proposed model is valuable to researchers and practitioners. It helps researchers apply artificial intelligence-based methods to building energy prediction from the perspective of paying selective attention to input data. Practitioners will benefit from developing accurate diagnosis of building energy efficiency and decision support for building retrofitting.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Attention-based bidirectional-long short-term memory for abnormal human activity detection
    Kumar, Manoj
    Patel, Anoop Kumar
    Biswas, Mantosh
    Shitharth, S.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [42] Water Level Forecasting Using Spatiotemporal Attention-Based Long Short-Term Memory Network
    Noor, Fahima
    Haq, Sanaulla
    Rakib, Mohammed
    Ahmed, Tarik
    Jamal, Zeeshan
    Siam, Zakaria Shams
    Hasan, Rubyat Tasnuva
    Adnan, Mohammed Sarfaraz Gani
    Dewan, Ashraf
    Rahman, Rashedur M.
    WATER, 2022, 14 (04)
  • [43] Hyperspectral Image Classification Using Attention-Based Bidirectional Long Short-Term Memory Network
    Mei, Shaohui
    Li, Xingang
    Liu, Xiao
    Cai, Huimin
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [44] A Customized Attention-Based Long Short-Term Memory Network for Distant Supervised Relation Extraction
    He, Dengchao
    Zhang, Hongjun
    Hao, Wenning
    Zhang, Rui
    Cheng, Kai
    NEURAL COMPUTATION, 2017, 29 (07) : 1964 - 1985
  • [45] Biomedical Ontology Matching Through Attention-Based Bidirectional Long Short-Term Memory Network
    Xue, Xingsi
    Jiang, Chao
    Zhang, Jie
    Hu, Cong
    JOURNAL OF DATABASE MANAGEMENT, 2021, 32 (04) : 14 - 27
  • [46] Effective Attention-based Neural Architectures for Sentence Compression with Bidirectional Long Short-Term Memory
    Nhi-Thao Tran
    Viet-Thang Luong
    Ngan Luu-Thuy Nguyen
    Minh-Quoc Nghiem
    PROCEEDINGS OF THE SEVENTH SYMPOSIUM ON INFORMATION AND COMMUNICATION TECHNOLOGY (SOICT 2016), 2016, : 123 - 130
  • [47] Milling tool wear prediction: optimized long short-term memory model based on attention mechanism
    Liu, Yiming
    Yang, Shucai
    Sun, Tao
    Zhang, Yuhua
    FERROELECTRICS, 2023, 607 (01) : 56 - 72
  • [48] Dam Deformation Interpretation and Prediction Based on a Long Short-Term Memory Model Coupled with an Attention Mechanism
    Su, Yan
    Weng, Kailiang
    Lin, Chuan
    Chen, Zeqin
    APPLIED SCIENCES-BASEL, 2021, 11 (14):
  • [49] Tool Wear Prediction Based on Adaptive Feature and Temporal Attention with Long Short-Term Memory Model
    Wang, Wanzhen
    Ngu, Sze Song
    Xin, Miaomiao
    Liu, Rong
    Wang, Qian
    Qiu, Man
    Zhang, Shengqun
    INTERNATIONAL JOURNAL OF ENGINEERING AND TECHNOLOGY INNOVATION, 2024, 14 (03) : 271 - 284
  • [50] Heating load prediction based on attention long short term memory: A case study of Xingtai
    Xue, Guixiang
    Qi, Chengying
    Li, Han
    Kong, Xiangfei
    Song, Jiancai
    ENERGY, 2020, 203