Probabilistic neural-network structure determination for pattern classification

被引:197
作者
Mao, KZ [1 ]
Tan, KC [1 ]
Ser, W [1 ]
机构
[1] Nanyang Technol Univ, Ctr Signal Proc, Singapore 2263, Singapore
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2000年 / 11卷 / 04期
关键词
genetic algorithms; orthogonal algorithm; pattern classification; probabilistic neural network (PNN);
D O I
10.1109/72.857781
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Network structure determination is an important issue in pattern classification based on a probabilistic neural network. In this study, a supervised network structure determination algorithm is proposed. The proposed algorithm consists of two parts and runs in an iterative way. The first part identifies an appropriate smoothing parameter using a genetic algorithm, while the second part determines suitable pattern layer neurons using a forward regression orthogonal algorithm. The proposed algorithm is capable of offering a fairly small network structure with satisfactory classification accuracy.
引用
收藏
页码:1009 / 1016
页数:8
相关论文
共 21 条
[1]  
[Anonymous], 1989, GENETIC ALGORITHM SE
[2]   IDENTIFICATION OF MIMO NON-LINEAR SYSTEMS USING A FORWARD-REGRESSION ORTHOGONAL ESTIMATOR [J].
BILLINGS, SA ;
CHEN, S ;
KORENBERG, MJ .
INTERNATIONAL JOURNAL OF CONTROL, 1989, 49 (06) :2157-2189
[3]  
Bishop C. M., 1995, NEURAL NETWORKS PATT
[4]   LEARNING VECTOR QUANTIZATION FOR THE PROBABILISTIC NEURAL NETWORK [J].
BURRASCANO, P .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1991, 2 (04) :458-461
[5]   ORTHOGONAL LEAST-SQUARES LEARNING ALGORITHM FOR RADIAL BASIS FUNCTION NETWORKS [J].
CHEN, S ;
COWAN, CFN ;
GRANT, PM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1991, 2 (02) :302-309
[6]   Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks [J].
Chen, S ;
Wu, Y ;
Luk, BL .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (05) :1239-1243
[7]  
KRAMER C, 1995, P ANN INT C IEEE ENG, V17, P807
[8]   Nearest prototype classification: Clustering, genetic algorithms, or random search? [J].
Kuncheva, LI ;
Bezdek, JC .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 1998, 28 (01) :160-164
[9]   Performance and efficiency: Recent advances in supervised learning [J].
Ma, S ;
Ji, CY .
PROCEEDINGS OF THE IEEE, 1999, 87 (09) :1519-1535
[10]   ON THE GENERALIZATION ABILITY OF NEURAL-NETWORK CLASSIFIERS [J].
MUSAVI, MT ;
CHAN, KH ;
HUMMELS, DM ;
KALANTRI, K .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1994, 16 (06) :659-663