Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model

被引:8
|
作者
Leippold, Markus [1 ]
Vasiljevic, Nikola
机构
[1] Univ Zurich, Plattenstr 14, CH-8032 Zurich, Switzerland
关键词
American options; Early exercise premium; Hyper-exponential jump-diffusion model; Maturity randomization; Jump-diffusion disentanglement; 1ST PASSAGE TIMES; BARRIER OPTIONS; LEVY PROCESSES; VALUATION; APPROXIMATION; RANDOMIZATION; DRIVEN; PRICES;
D O I
10.1016/j.jbankfin.2017.01.014
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We analyze American put options in a hyper-exponential jump-diffusion model. Our contribution is threefold. Firstly, by following a maturity randomization approach, we solve the partial integro-differential equation and obtain a tight lower bound for the American option price. Secondly, our method allows to disentangle the contributions of jumps and diffusion for the early exercise premium. Finally, using American-style options on the S&P 100 index from January 2007 until December 2012, we estimate various hyper-exponential specifications and investigate the implications for option pricing and jump diffusion disentanglement. We find that jump risk accounts for a large part of the early exercise premium. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:78 / 94
页数:17
相关论文
共 50 条
  • [31] A radial basis collocation method for pricing American options under regime-switching jump-diffusion models
    Bastani, Ali Foroush
    Ahmadi, Zaniar
    Damircheli, Davood
    APPLIED NUMERICAL MATHEMATICS, 2013, 65 : 79 - 90
  • [32] Representations for conditional expectations and applications to pricing and hedging of financial products in Levy and jump-diffusion setting
    Daveloose, Catherine
    Khedher, Asma
    Vanmaele, Michele
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2019, 37 (02) : 281 - 319
  • [33] JUMP-DIFFUSION RISK-SENSITIVE ASSET MANAGEMENT II: JUMP-DIFFUSION FACTOR MODEL
    Davis, Mark
    Lleo, Sebastien
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (02) : 1441 - 1480
  • [34] Jump-diffusion option pricing with non-IID jumps
    Zou, Lin
    Camara, Antonio
    Li, Weiping
    INTERNATIONAL JOURNAL OF FINANCIAL ENGINEERING, 2024,
  • [35] Pricing equity warrants with a promised lowest price in Merton's jump-diffusion model
    Xiao, Weilin
    Zhang, Xili
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 458 : 219 - 238
  • [36] The Pricing Model and VaR on European Option with the Underlying Stock Pricing Following Jump-Diffusion Model with Stochastic Interest Rate
    Xie Yanpeng
    Wang Yuzhang
    Ding Changkun
    PROCEEDINGS OF THE 3RD (2011) INTERNATIONAL CONFERENCE ON FINANCIAL RISK AND CORPORATE FINANCE MANAGEMENT, VOLS 1 AND 2, 2011, : 712 - 716
  • [37] IMEX schemes for pricing options under jump-diffusion models
    Salmi, Santtu
    Toivanen, Jari
    APPLIED NUMERICAL MATHEMATICS, 2014, 84 : 33 - 45
  • [38] Generalized pricing formulas for stochastic volatility jump diffusion models applied to the exponential Vasicek model
    Liang, L. Z. J.
    Lemmens, D.
    Tempere, J.
    EUROPEAN PHYSICAL JOURNAL B, 2010, 75 (03): : 335 - 342
  • [39] A positivity-preserving numerical scheme for option pricing model with transaction costs under jump-diffusion process
    Zhou, Shengwu
    Han, Lei
    Li, Wei
    Zhang, Yan
    Han, Miao
    COMPUTATIONAL & APPLIED MATHEMATICS, 2015, 34 (03): : 881 - 900
  • [40] High-performance computation of pricing two-asset American options under the Merton jump-diffusion model on a GPU
    Ghosh, Abhijit
    Mishra, Chittaranjan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 105 : 29 - 40