Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model

被引:8
|
作者
Leippold, Markus [1 ]
Vasiljevic, Nikola
机构
[1] Univ Zurich, Plattenstr 14, CH-8032 Zurich, Switzerland
关键词
American options; Early exercise premium; Hyper-exponential jump-diffusion model; Maturity randomization; Jump-diffusion disentanglement; 1ST PASSAGE TIMES; BARRIER OPTIONS; LEVY PROCESSES; VALUATION; APPROXIMATION; RANDOMIZATION; DRIVEN; PRICES;
D O I
10.1016/j.jbankfin.2017.01.014
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We analyze American put options in a hyper-exponential jump-diffusion model. Our contribution is threefold. Firstly, by following a maturity randomization approach, we solve the partial integro-differential equation and obtain a tight lower bound for the American option price. Secondly, our method allows to disentangle the contributions of jumps and diffusion for the early exercise premium. Finally, using American-style options on the S&P 100 index from January 2007 until December 2012, we estimate various hyper-exponential specifications and investigate the implications for option pricing and jump diffusion disentanglement. We find that jump risk accounts for a large part of the early exercise premium. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:78 / 94
页数:17
相关论文
共 50 条
  • [21] A meshless method for Asian style options pricing under the Merton jump-diffusion model
    Saib, A. A. E. F.
    Sunhaloo, M. S.
    Bhuruth, M.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (12) : 2498 - 2514
  • [22] PRICING BASKET AND ASIAN OPTIONS UNDER THE JUMP-DIFFUSION PROCESS
    Bae, Kwangil
    Kang, Jangkoo
    Kim, Hwa-Sung
    JOURNAL OF FUTURES MARKETS, 2011, 31 (09) : 830 - 854
  • [23] Pricing equity warrants in Merton jump-diffusion model with credit risk
    Zhou, Qing
    Zhang, Xili
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 557
  • [24] Pricing pension plans under jump-diffusion models for the salary
    Carmen Calvo-Garrido, M.
    Vazquez, Carlos
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (12) : 1933 - 1944
  • [25] Solving complex PIDE systems for pricing American option under multi-state regime switching jump-diffusion model
    Yousuf, M.
    Khaliq, A. Q. M.
    Alrabeei, Salah
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (08) : 2989 - 3001
  • [26] A jump-diffusion model for pricing and hedging with margined options: An application to Brent crude oil contracts
    Hilliard, Jimmy E.
    Hilliard, Jitka
    JOURNAL OF BANKING & FINANCE, 2019, 98 : 137 - 155
  • [27] A jump-diffusion approach to modelling vulnerable option pricing
    Xu, Weidong
    Xu, Weijun
    Li, Hongyi
    Xiao, Weilin
    FINANCE RESEARCH LETTERS, 2012, 9 (01): : 48 - 56
  • [28] Errors in the IMEX-BDF-OS methods for pricing American style options under the jump-diffusion model
    Deepak Kumar Yadav
    Akanksha Bhardwaj
    Alpesh Kumar
    Computational and Applied Mathematics, 2024, 43
  • [29] DG Method for Pricing European Options under Merton Jump-Diffusion Model
    Hozman, Jiri
    Tichy, Tomas
    Vlasak, Miloslav
    APPLICATIONS OF MATHEMATICS, 2019, 64 (05) : 501 - 530
  • [30] Pricing options under a generalized Markov-modulated jump-diffusion model
    Elliott, Robert J.
    Siu, Tak Kuen
    Chan, Leunglung
    Lau, John W.
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2007, 25 (04) : 821 - 843