Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model

被引:8
|
作者
Leippold, Markus [1 ]
Vasiljevic, Nikola
机构
[1] Univ Zurich, Plattenstr 14, CH-8032 Zurich, Switzerland
关键词
American options; Early exercise premium; Hyper-exponential jump-diffusion model; Maturity randomization; Jump-diffusion disentanglement; 1ST PASSAGE TIMES; BARRIER OPTIONS; LEVY PROCESSES; VALUATION; APPROXIMATION; RANDOMIZATION; DRIVEN; PRICES;
D O I
10.1016/j.jbankfin.2017.01.014
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We analyze American put options in a hyper-exponential jump-diffusion model. Our contribution is threefold. Firstly, by following a maturity randomization approach, we solve the partial integro-differential equation and obtain a tight lower bound for the American option price. Secondly, our method allows to disentangle the contributions of jumps and diffusion for the early exercise premium. Finally, using American-style options on the S&P 100 index from January 2007 until December 2012, we estimate various hyper-exponential specifications and investigate the implications for option pricing and jump diffusion disentanglement. We find that jump risk accounts for a large part of the early exercise premium. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:78 / 94
页数:17
相关论文
共 50 条
  • [1] Compound option pricing under a double exponential Jump-diffusion model
    Liu, Yu-hong
    Jiang, I-Ming
    Hsu, Wei-tze
    NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2018, 43 : 30 - 53
  • [2] PRICING AND HEDGING BARRIER OPTIONS IN A HYPER-EXPONENTIAL ADDITIVE MODEL
    Jeannin, Marc
    Pistorius, Martijn
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2010, 13 (05) : 657 - 681
  • [3] Option Pricing Under a Mixed-Exponential Jump Diffusion Model
    Cai, Ning
    Kou, S. G.
    MANAGEMENT SCIENCE, 2011, 57 (11) : 2067 - 2081
  • [4] Pricing discrete path-dependent options under a double exponential jump-diffusion model
    Fuh, Cheng-Der
    Luo, Sheng-Feng
    Yen, Ju-Fang
    JOURNAL OF BANKING & FINANCE, 2013, 37 (08) : 2702 - 2713
  • [5] Pricing Defaultable Bonds Using a Levy Jump-Diffusion Model
    Chiang, Shu L.
    Tsai, Ming S.
    INTERNATIONAL REVIEW OF FINANCE, 2019, 19 (03) : 613 - 640
  • [6] Pricing American continuous-installment put option in a jump-diffusion model
    Deng Guohe
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 8289 - 8294
  • [7] A new radial basis functions method for pricing American options under Merton's jump-diffusion model
    Saib, A. A. E. F.
    Tangman, D. Y.
    Bhuruth, M.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (09) : 1164 - 1185
  • [8] OPTION PRICING IN A JUMP-DIFFUSION MODEL WITH REGIME SWITCHING
    Yuen, Fei Lung
    Yang, Hailiang
    ASTIN BULLETIN, 2009, 39 (02): : 515 - 539
  • [9] Option pricing under a double-exponential jump-diffusion model with varying severity of jumps
    Lin, Xenos Chang-Shuo
    Miao, Daniel Wei-Chung
    Lee, Ying-, I
    Zheng, Yu
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2024, 38 (01) : 39 - 64
  • [10] Wavelet-Galerkin Method for Option Pricing under a Double Exponential Jump-Diffusion Model
    Cerna, Dana
    2018 5TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND COMPUTERS IN SCIENCES AND INDUSTRY (MCSI 2018), 2018, : 122 - 127