Harnessing and Enhancing Macrophage Phagocytosis for Cancer Therapy

被引:68
|
作者
Chen, Siqi [1 ]
Lai, Seigmund W. T. [1 ]
Brown, Christine E. [1 ,2 ]
Feng, Mingye [1 ]
机构
[1] City Hope Comprehens Canc Ctr, Beckman Res Inst, Dept Immunooncol, Duarte, CA 91010 USA
[2] City Hope Natl Med Ctr, Dept Hematol & Hematopoiet Cell Transplantat, 1500 E Duarte Rd, Duarte, CA 91010 USA
来源
FRONTIERS IN IMMUNOLOGY | 2021年 / 12卷
基金
美国国家卫生研究院;
关键词
macrophage; cancer immunotherapy; phagocytosis; antibody; chimeric antigen receptor (CAR); nanoparticle; TUMOR-ASSOCIATED MACROPHAGES; CAR-T-CELLS; IMMUNE CHECKPOINT INHIBITOR; ANTI-CD47; ANTIBODY; NANOPARTICLES; POLARIZATION; ACTIVATION; MECHANISMS; CD47; FC;
D O I
10.3389/fimmu.2021.635173
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Cancer immunotherapy has revolutionized the paradigm for the clinical management of cancer. While FDA-approved cancer immunotherapies thus far mainly exploit the adaptive immunity for therapeutic efficacy, there is a growing appreciation for the importance of innate immunity in tumor cell surveillance and eradication. The past decade has witnessed macrophages being thrust into the spotlight as critical effectors of an innate anti-tumor response. Promising evidence from preclinical and clinical studies have established targeting macrophage phagocytosis as an effective therapeutic strategy, either alone or in combination with other therapeutic moieties. Here, we review the recent translational advances in harnessing macrophage phagocytosis as a pivotal therapeutic effort in cancer treatment. In addition, this review emphasizes phagocytosis checkpoint blockade and the use of nanoparticles as effective strategies to potentiate macrophages for phagocytosis. We also highlight chimeric antigen receptor macrophages as a next-generation therapeutic modality linking the closely intertwined innate and adaptive immunity to induce efficacious anti-tumor immune responses.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Nanoparticle-enabled concurrent modulation of phagocytosis and repolarization of macrophages for enhanced cancer immunotherapy
    Zhang, Jing-Yang
    Chen, Fang -Man
    Liu, Rong
    Luo, Jia-Qi
    Huang, Yong-Cong
    Shu, Na
    Zheng, Sui-Juan
    Shao, Dan
    Leong, Kam W.
    Du, Jin-Zhi
    NANO TODAY, 2022, 47
  • [22] Differential Macrophage Responses to Gold Nanostars and Their Implication for Cancer Immunotherapy
    Kenry
    Eschle, Benjamin K.
    Andreiuk, Bohdan
    Gokhale, Prafulla C.
    Mitragotri, Samir
    ADVANCED THERAPEUTICS, 2022, 5 (03)
  • [23] TTI-621 (SIRPαFc), a CD47-blocking cancer immunotherapeutic, triggers phagocytosis of lymphoma cells by multiple polarized macrophage subsets
    Lin, Gloria H. Y.
    Chai, Vien
    Lee, Vivian
    Dodge, Karen
    Truong, Tran
    Wong, Mark
    Johnson, Lisa D.
    Linderoth, Emma
    Pang, Xinli
    Winston, Jeff
    Petrova, Penka S.
    Uger, Robert A.
    Viller, Natasja N.
    PLOS ONE, 2017, 12 (10):
  • [24] CANCER Metastasis risk after anti-macrophage therapy
    Keklikoglou, Ioanna
    De Palma, Michele
    NATURE, 2014, 515 (7525) : 46 - 47
  • [25] Phosphoproteomic Profiling Reveals mTOR Signaling in Sustaining Macrophage Phagocytosis of Cancer Cells
    Wang, Bixin
    Cao, Xu
    Garcia-Mansfield, Krystine
    Zhou, Jingkai
    Manousopoulou, Antigoni
    Pirrotte, Patrick
    Wang, Yingyu
    Wang, Leo D.
    Feng, Mingye
    CANCERS, 2024, 16 (24)
  • [26] CD47 promotes ovarian cancer progression by inhibiting macrophage phagocytosis
    Liu, Ran
    Wei, Huiting
    Gao, Peng
    Yu, Hu
    Wang, Ke
    Fu, Zheng
    Ju, Baohui
    Zhao, Meng
    Dong, Shangwen
    Li, Zhijun
    He, Yifeng
    Huang, Yuting
    Yao, Zhi
    ONCOTARGET, 2017, 8 (24) : 39021 - 39032
  • [27] EGFR of platelet regulates macrophage activation and bacterial phagocytosis function
    Luo, Shuhua
    Xu, Riping
    Xie, Pengyun
    Liu, Xiaolei
    Ling, Chunxiu
    Liu, Yusha
    Zhang, Xuedi
    Xia, Zhengyuan
    Chen, Zhanghui
    Tang, Jing
    JOURNAL OF INFLAMMATION-LONDON, 2024, 21 (01):
  • [28] Exploring the Biocompatibility of Zwitterionic Copolymers for Controlling Macrophage Phagocytosis of Bacteria
    Chen, Shaojun
    Ren, Huanhuan
    Mei, Zhankui
    Zhuo, Haitao
    Yang, Haipeng
    Ge, Zaochuan
    MACROMOLECULAR BIOSCIENCE, 2016, 16 (11) : 1714 - 1722
  • [29] A novel real time imaging platform to quantify macrophage phagocytosis
    Kapellos, Theodore S.
    Taylor, Lewis
    Lee, Heyne
    Cowley, Sally A.
    James, William S.
    Iqbal, Asif J.
    Greaves, David R.
    BIOCHEMICAL PHARMACOLOGY, 2016, 116 : 107 - 119
  • [30] TMEM55a localizes to macrophage phagosomes to downregulate phagocytosis
    Morioka, Shin
    Nigorikawa, Kiyomi
    Okada, Eri
    Tanaka, Yoshimasa
    Kasuu, Yoshihiro
    Yamada, Miho
    Kofuji, Satoshi
    Takasuga, Shunsuke
    Nakanishi, Hiroki
    Sasaki, Takehiko
    Hazeki, Kaoru
    JOURNAL OF CELL SCIENCE, 2018, 131 (05)