Achieve atomic resolution in in situ S/TEM experiments to examine complex interface structures in nanomaterials

被引:14
作者
Jinschek, Joerg R. [1 ]
机构
[1] FEI Co, Mat Sci BU, Eindhoven, Netherlands
关键词
Advanced electron microscopy; In situ electron microscopy; Atomic resolution; Interface; TRANSMISSION ELECTRON-MICROSCOPY; ENERGY-LOSS SPECTROSCOPY; RADIATION-DAMAGE; LIQUID CELLS; TEM; NANOINDENTATION; SCALE; STEM; SYSTEM; NANOCRYSTALS;
D O I
10.1016/j.cossms.2016.05.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Characterization methods utilizing Scanning / Transmission Electron Microscopes have become routine techniques to investigate interface structures in nanomaterials. High resolution imaging methods reveals atomic structure; while spectroscopy gives additional access to elemental distribution and chemical bonding. Focus behind these developments is the research on nanomaterial-based technologies. Current trends in S/TEM research focus on extending atomic scale characterization capabilities from static to dynamic studies to understand in more detail the link between structure and its evolution vs. unique properties directly on its characteristic length scale. Progress in recent research is briefly reviewed to highlight the potential when using latest S/TEM methodology optimized for atomic scale investigations and how this can be extended to in situ studies of interfacial effects, followed by comments on how to achieve and maintain highest possible resolution & sensitivity when keeping the effect of electron beam under control during these atomic-scale in situ experiments. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:77 / 91
页数:15
相关论文
共 183 条
  • [11] Characterisation of a CMOS active pixel sensor for use in the TEAM microscope
    Battaglia, Marco
    Contarato, Devis
    Denes, Peter
    Doering, Dionisio
    Duden, Thomas
    Krieger, Brad
    Giubilato, Piero
    Gnani, Dario
    Radmilovic, Velimir
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2010, 622 (03) : 669 - 677
  • [12] Nanoindentation induced piezoelectricity in SrTiO3 single crystals
    Bdikin, I.
    Singh, Budhendra
    Kumar, J. Suresh
    Graca, M. P. F.
    Balbashov, A. M.
    Gracio, J.
    Kholkin, A. L.
    [J]. SCRIPTA MATERIALIA, 2014, 74 : 76 - 79
  • [13] Development of a fast electromagnetic beam blanker for compressed sensing in scanning transmission electron microscopy
    Beche, A.
    Goris, B.
    Freitag, B.
    Verbeeck, J.
    [J]. APPLIED PHYSICS LETTERS, 2016, 108 (09)
  • [14] Bell D.C., 2003, REED ENERGY DISPERSI
  • [15] Botton H., 2015, MICRON, V68, P1
  • [16] Brandon D., 2008, MICROSTRUCTURAL CHAR, DOI DOI 10.1002/9780470727133
  • [17] Browning N., 2012, Modeling Nanoscale Imaging in Electron Microscopy, P11, DOI [DOI 10.1007/978-1-4614-2191-7_2, 10.1007/978-1-4614-2191-7_2]
  • [18] EELS in the STEM: Determination of materials properties on the atomic scale
    Browning, ND
    Wallis, DJ
    Nellist, PD
    Pennycook, SJ
    [J]. MICRON, 1997, 28 (05) : 333 - 348
  • [19] Cerchiara R.R., 2011, Micros. Today, V19, P16, DOI [DOI 10.1017/, 10.1017/]
  • [20] Operando Transmission Electron Microscopy: A Technique for Detection of Catalysis Using Electron Energy-Loss Spectroscopy in the Transmission Electron Microscope
    Chenna, Santhosh
    Crozier, Peter A.
    [J]. ACS CATALYSIS, 2012, 2 (11): : 2395 - 2402