Nonlinear saturation of baroclinic instability in the Phillips model: The case of energy

被引:2
作者
Xiang, J [1 ]
Sun, LT
机构
[1] Nanjing Univ, Dept Atmospher Sci, MOE, Key LMSW E, Nanjing 210093, Peoples R China
[2] PLA Univ Sci & Technol, Inst Meteorol, Nanjing 211101, Peoples R China
关键词
nonlinear saturation; baroclinic instability; Phillips model;
D O I
10.1007/s00376-002-0066-0
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A conservation law for the Phillips model is derived. Using this law, the nonlinear saturation of purely baroclinic instability caused by the vertical velocity shear of the basic flow in the Phillips model-the case of energy-is studied within the context of Arnold's second stability theorem. Analytic upper bounds on the energy of wavy disturbances are obtained. For one unstable region in the parameter plane, the result here is a second-order correction in epsilon to Shepherd's; For another unstable region, the analytic upper bound on the energy of wavy disturbances offers an effective constraint on wavy (nonzonal) disturbances Phi(i)' at any time.
引用
收藏
页码:1079 / 1090
页数:12
相关论文
共 17 条
[1]  
MU M, 1991, SCI CHINA SER B, V34, P1516
[2]   ON ARNOLDS 2ND NONLINEAR STABILITY THEOREM FOR 2-DIMENSIONAL QUASI-GEOSTROPHIC FLOW [J].
MU, M ;
SHEPHERD, TG .
GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 1994, 75 (01) :21-37
[3]   NONLINEAR STABILITY OF MULTILAYER QUASI-GEOSTROPHIC FLOW [J].
MU, M ;
ZENG, QC ;
SHEPHERD, TG ;
LIU, YM .
JOURNAL OF FLUID MECHANICS, 1994, 264 :165-184
[4]  
MU M, 1994, J ATMOS SCI, V51, P3427, DOI 10.1175/1520-0469(1994)051<3427:NSOEM>2.0.CO
[5]  
2
[6]   Optimality of a nonlinear stability criterion of two-layer Phillips model [J].
Mu, M .
CHINESE SCIENCE BULLETIN, 1998, 43 (08) :656-659
[7]  
Paret J, 1996, J ATMOS SCI, V53, P2905, DOI 10.1175/1520-0469(1996)053<2905:NSOBII>2.0.CO
[8]  
2
[9]  
SHEPHERD TG, 1988, J ATMOS SCI, V45, P2014, DOI 10.1175/1520-0469(1988)045<2014:NSOBIP>2.0.CO
[10]  
2