TENET: gene network reconstruction using transfer entropy reveals key regulatory factors from single cell transcriptomic data

被引:29
作者
Kim, Junil [1 ,2 ]
Jakobsen, Simon T. [3 ]
Natarajan, Kedar N. [3 ,4 ]
Won, Kyoung-Jae [1 ,2 ]
机构
[1] Univ Copenhagen, Biotech Res & Innovat Ctr BRIC, DK-2200 Copenhagen N, Denmark
[2] Univ Copenhagen, Fac Hlth & Med Sci, DanStem, Novo Nordisk Fdn,Ctr Stem Cell Biol, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
[3] Univ Southern Denmark, Dept Biochem & Mol Biol, Funct Genom & Metab Unit, Odense, Denmark
[4] Univ Southern Denmark, Danish Inst Adv Study D IAS, Odense, Denmark
关键词
EMBRYONIC STEM-CELLS; GROUND-STATE; SELF-RENEWAL; PLURIPOTENCY; EXPRESSION; DYNAMICS; TRANSITION; INFERENCE; TIME; INTEGRATION;
D O I
10.1093/nar/gkaa1014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Accurate prediction of gene regulatory rules is important towards understanding of cellular processes. Existing computational algorithms devised for bulk transcriptomics typically require a large number of time points to infer gene regulatory networks (GRNs), are applicable for a small number of genes and fail to detect potential causal relationships effectively. Here, we propose a novel approach 'TENET' to reconstruct GRNs from single cell RNA sequencing (scRNAseq) datasets. Employing transfer entropy (TE) to measure the amount of causal relationships between genes, TENET predicts large-scale gene regulatory cascades/relationships from scRNAseq data. TENET showed better performance than other GRN reconstructors, in identifying key regulators from public datasets. Specifically from scRNAseq, TENET identified key transcriptional factors in embryonic stem cells (ESCs) and during direct cardiomyocytes reprogramming, where other predictors failed. We further demonstrate that known target genes have significantly higher TE values, and TENET predicted higher TE genes were more influenced by the perturbation of their regulator. Using TENET, we identified and validated that Nme2 is a culture condition specific stem cell factor. These results indicate that TENET is uniquely capable of identifying key regulators from scRNAseq data.
引用
收藏
页数:11
相关论文
共 68 条
[41]  
Martin M., 2011, EMBNET J, V17, P10, DOI [10.14806/ej.17.1.200, DOI 10.14806/EJ.17.1.200]
[42]   SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation [J].
Matsumoto, Hirotaka ;
Kiryu, Hisanori ;
Furusawa, Chikara ;
Ko, Minoru S. H. ;
Ko, Shigeru B. H. ;
Gouda, Norio ;
Hayashi, Tetsutaro ;
Nikaido, Itoshi .
BIOINFORMATICS, 2017, 33 (15) :2314-2321
[43]   GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks [J].
Moerman, Thomas ;
Santos, Sara Aibar ;
Gonzalez-Blas, Carmen Bravo ;
Simm, Jaak ;
Moreau, Yves ;
Aerts, Jan ;
Aerts, Stein .
BIOINFORMATICS, 2019, 35 (12) :2159-2161
[44]   Decoding the regulatory network of early blood development from single-cell gene expression measurements [J].
Moignard, Victoria ;
Woodhouse, Steven ;
Haghverdi, Laleh ;
Lilly, Andrew J. ;
Tanaka, Yosuke ;
Wilkinson, Adam C. ;
Buettner, Florian ;
Macaulay, Iain C. ;
Jawaid, Wajid ;
Diamanti, Evangelia ;
Nishikawa, Shin-Ichi ;
Piterman, Nir ;
Kouskoff, Valerie ;
Theis, Fabian J. ;
Fisher, Jasmin ;
Goettgens, Berthold .
NATURE BIOTECHNOLOGY, 2015, 33 (03) :269-+
[45]   Predicting gene regulatory networks from cell atlases [J].
Moller, Andreas Fonss ;
Natarajan, Kedar Nath .
LIFE SCIENCE ALLIANCE, 2020, 3 (11)
[46]   The emergent landscape of the mouse gut endoderm at single-cell resolution [J].
Nowotschin, Sonja ;
Setty, Manu ;
Kuo, Ying-Yi ;
Liu, Vincent ;
Garg, Vidur ;
Sharma, Roshan ;
Simon, Claire S. ;
Saiz, Nestor ;
Gardner, Rui ;
Boutet, Stephane C. ;
Church, Deanna M. ;
Hoodless, Pamela A. ;
Hadjantonakis, Anna-Katerina ;
Pe'er, Dana .
NATURE, 2019, 569 (7756) :361-+
[47]   Transfer Entropy Reconstruction and Labeling of Neuronal Connections from Simulated Calcium Imaging [J].
Orlandi, Javier G. ;
Stetter, Olav ;
Soriano, Jordi ;
Geisel, Theo ;
Battaglia, Demian .
PLOS ONE, 2014, 9 (06)
[48]   Endogenous epitope-tagging of Tet1, Tet2 and Tet3 identifies TET2 as a naive pluripotency marker [J].
Pantier, Raphael ;
Tatar, Tulin ;
Colby, Douglas ;
Chambers, Ian .
LIFE SCIENCE ALLIANCE, 2019, 2 (05)
[49]   Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data [J].
Pratapa, Aditya ;
Jalihal, Amogh P. ;
Law, Jeffrey N. ;
Bharadwaj, Aditya ;
Murali, T. M. .
NATURE METHODS, 2020, 17 (02) :147-+
[50]   Klf2 and Tfcp2l1, Two Wnt/β-Catenin Targets, Act Synergistically to Induce and Maintain Naive Pluripotency [J].
Qiu, Dongbo ;
Ye, Shoudong ;
Ruiz, Bryan ;
Zhou, Xingliang ;
Liu, Dahai ;
Zhang, Qi ;
Ying, Qi-Long .
STEM CELL REPORTS, 2015, 5 (03) :314-322