Lowering topological entropy over subsets

被引:11
作者
Huang, Wen [1 ]
Ye, Xiangdong [1 ]
Zhang, Guohua [2 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
关键词
CONDITIONAL ENTROPY; VARIATIONAL PRINCIPLE; SPACES; MAPS;
D O I
10.1017/S0143385709000066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X, T) be a topological dynamical system (TDS), and h(T, K) the topological entropy of a subset K of X. (X. T) is lowerable if for each 0 <= h <= h (T, X) there is a non-empty compact subset with entropy h; it is hereditarily lowerable if each non-empty compact subset is lowerable; it is hereditarily uniformly lowerable if for each non-empty compact subset K and each 0 <= h <= h (T, K) there is a non-empty compact subset K(h) subset of K with h(T, K(h)) = h and K(h) has at most one limit point. It is shown that each TDS with finite entropy is lowerable, and that a TDS (X, T) is hereditarily uniformly lowerable if and only if it is asymptotically h-expansive.
引用
收藏
页码:181 / 209
页数:29
相关论文
共 30 条
[1]  
[Anonymous], 1986, PROGR PROBABILITY ST
[2]  
[Anonymous], GRADUATE TEXTS MATH
[3]  
Bogenschutz T., 1992, Random Comput. Dyn., V1, P99
[4]   ENTROPY-EXPANSIVE MAPS [J].
BOWEN, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 164 (NFEB) :323-&
[5]   TOPOLOGICAL ENTROPY FOR NONCOMPACT SETS [J].
BOWEN, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 184 (OCT) :125-136
[7]   The entropy theory of symbolic extensions [J].
Boyle, M ;
Downarowicz, T .
INVENTIONES MATHEMATICAE, 2004, 156 (01) :119-161
[8]   Residual entropy, conditional entropy and subshift covers [J].
Boyle, M ;
Fiebig, D ;
Fiebig, U .
FORUM MATHEMATICUM, 2002, 14 (05) :713-757
[9]   Intrinsic ergodicity of smooth interval maps [J].
Buzzi, J .
ISRAEL JOURNAL OF MATHEMATICS, 1997, 100 (1) :125-161
[10]   Entropy structure [J].
Downarowicz, T .
JOURNAL D ANALYSE MATHEMATIQUE, 2005, 96 (1) :57-116