The endomorphism ring of a localized coherent functor

被引:12
作者
Herzog, I
机构
[1] Department of Mathematics, University of Notre Dame, Notre Dame
关键词
D O I
10.1006/jabr.1997.6920
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C be a commutative artinian ring and Lambda an artin C-algebra. The category of coherent additive functors A: mod-Lambda --> Ab on the finitely presented right Lambda-modules will be denoted by Ab(Lambda). This category is equivalent to the free abelian category over the ring Lambda. If L-0 subset of or equal to Ab(Lambda) is the Serre subcategory of the finite length objects of Ab(Lambda) and A is an element of Ab(Lambda), it is proved that the endomorphism ring End(Ab(Lambda)/L0) A(L0) of the localized object A(L0) is a locally artin C-algebra. This is used to show that the Krull-Gabriel dimension of the category Ab(Lambda) cannot equal 1. In particular, this holds for finite rings. (C) 1997 Academic Press.
引用
收藏
页码:416 / 426
页数:11
相关论文
共 14 条
  • [1] AUSLANDER M, 1966, P C CAT ALG LA JOLL
  • [2] AUSLANDER M, QUEEN MARY COLLEGE M
  • [3] AUSLANDER M, 1980, J ALGEBRA, V66, P62
  • [4] Auslander M., 1992, London Mathematical Society Lecture Note Series, V168, P1
  • [5] Crawley-Boevey W., 1992, LONDON MATH SOC LECT, V168, P127
  • [6] FREYD P, 1966, P C CAT ALG LA JOLL
  • [7] Gabriel, 1962, B SOC MATH FRANCE, V90, P323
  • [8] HERZOG I, IN PRESS P LONDON MA
  • [9] Jensen C. U., 1989, MODEL THEORETIC ALGE
  • [10] KRAUSE H, 1995, GENERIC MODULES ARTI