Cryogenic W-Band SiGe BiCMOS Low-Noise Amplifier

被引:0
作者
Varonen, Mikko [1 ]
Sheikhipoor, Nima [1 ]
Gabritchidze, Bekari [2 ]
Cleary, Kieran [2 ]
Forsten, Henrik [1 ]
Ruecker, Holger [3 ]
Kaynak, Mehmet [3 ]
机构
[1] VTT Tech Res Ctr Finland Ltd, MilliLab, Espoo, Finland
[2] CALTECH, Cahill Radio Astron Lab, Pasadena, CA USA
[3] IHP Leibniz Inst Innovat Mikroelekt, Frankfurt, Germany
来源
PROCEEDINGS OF THE 2020 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS) | 2020年
基金
芬兰科学院;
关键词
BiCMOS integrated circuits; cryogenics; heterojunction bipolar transistors (HBT); low-noise amplifiers (LNA); MMICs; silicon germanium (SiGe); TEMPERATURE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we present the design, modeling, and on-wafer measurement results of an ultra-wideband cryogenically cooled SiGe low-noise amplifier covering at least 71 to 116 GHz. When cryogenically cooled to 20 K and measured on wafer the SiGe amplifier shows 95-116-K noise temperature from 77 to 116 GHz. This means 6 to 7 times improvement in noise temperature compared to room temperature noise. The measured gain is around 20 dB for frequency range of 71 to 116 GHz with unprecedented low power consumption of 2.8 mW. To the best of authors' knowledge, this is the highest frequency cryogenic SiGe low-noise amplifier and lowest noise performance for silicon amplifiers for W-band reported to date.
引用
收藏
页码:185 / 188
页数:4
相关论文
共 16 条
[1]  
[Anonymous], 2009, THESIS CIT
[2]   Broadband MMIC LNAs for ALMA Band 2+3 With Noise Temperature Below 28 K [J].
Cuadrado-Calle, David ;
George, Danielle ;
Fuller, Gary A. ;
Cleary, Kieran ;
Samoska, Lorene ;
Kangaslahti, Pekka ;
Kooi, Jacob W. ;
Soria, Mary ;
Varonen, Mikko ;
Lai, Richard ;
Mei, Xiaobing .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2017, 65 (05) :1589-1597
[3]   A NEW CRITERION FOR LINEAR 2-PORT STABILITY USING A SINGLE GEOMETRICALLY DERIVED PARAMETER [J].
EDWARDS, ML ;
SINSKY, JH .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1992, 40 (12) :2303-2311
[4]   A 53-117 GHz LNA in 28-nm FDSOI CMOS [J].
Karaca, Denizhan ;
Varonen, Mikko ;
Parveg, Dristy ;
Vahdati, Ali ;
Halonen, Kari A. I. .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2017, 27 (02) :171-173
[5]  
KOOLEN MCAM, 1991, PROCEEDINGS OF THE 1991 BIPOLAR CIRCUITS AND TECHNOLOGY MEETING, P188, DOI 10.1109/BIPOL.1991.160985
[6]   Broadband Millimeter-Wave LNAs (47-77 GHz and 70-140 GHz) Using a T-Type Matching Topology [J].
Liu, Gang ;
Schumacher, Hermann .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2013, 48 (09) :2022-2029
[7]   Ultra-Low-Power Cryogenic SiGe Low-Noise Amplifiers: Theory and Demonstration [J].
Montazeri, Shirin ;
Wong, Wei-Ting ;
Coskun, Ahmet H. ;
Bardin, Joseph C. .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2016, 64 (01) :178-187
[8]   Cryogenic Operation of a Millimeter-Wave SiGe BiCMOS Low-Noise Amplifier [J].
Ramirez, Wagner ;
Forsten, Henrik ;
Varonen, Mikko ;
Reeves, Rodrigo ;
Kantanen, Mikko ;
Mehmet, Kaynak ;
Torres, Sergio .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2019, 29 (06) :403-405
[9]  
Reeves R, 2014, 2014 9TH EUROPEAN MICROWAVE INTEGRATED CIRCUIT CONFERENCE (EUMIC), P580, DOI 10.1109/EuMIC.2014.6997923
[10]   Low-Power Very Low-Noise Cryogenic SiGe IF Amplifiers for Terahertz Mixer Receivers [J].
Russell, Damon ;
Weinreb, Sander .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2012, 60 (06) :1641-1648