Enhanced Charge Transport via Metallic 1T Phase Transition Metal Dichalcogenides-Mediated Hole Transport Layer Engineering for Perovskite Solar Cells

被引:20
作者
Choi, Yunseong [1 ]
Jung, Seungon [1 ]
Oh, Nam Khen [1 ]
Lee, Junghyun [1 ]
Seo, Jihyung [1 ]
Kim, Ungsoo [1 ]
Koo, Donghwan [1 ]
Park, Hyesung [1 ]
机构
[1] UNIST, Dept Energy Engn, Sch Energy & Chem Engn, Low Dimens Carbon Mat Ctr,Perovtron Res Ctr, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
charge transport; hole transport layer; PEDOT; PSS; perovskite solar cells; transition metal dichalcogenides; PHOTOVOLTAIC PERFORMANCE; INTERFACIAL LAYER; HIGHLY EFFICIENT; WSE2; MOS2; ELECTRODE; FILM; STABILITY; EVOLUTION; OXIDE;
D O I
10.1002/cnma.201900101
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In perovskite photovoltaic cells having a p-i-n structure, the hole transport layer (HTL) plays an important role in device performance because it has a direct impact on the crystallinity of overlying perovskite films as well as the interfacial charge transport. Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT : PSS) has been widely used as an HTL owing to its desirable electrical and optical properties with solution processability. However, improving the functionality of PEDOT : PSS still requires broad attention to maximize the related solar cell performance, such as further enhancing the electrical properties to achieve better charge transport at the electrode and photoactive layer interface and reducing the nucleation energy barrier to improve crystallinity of the overlying perovskite films. Two-dimensional transition metal dichalcogenides (TMDs) have been studied in various optoelectronic devices owing to their intriguing optoelectric features. In this study, tungsten diselenide (WSe2) was implemented with PEDOT : PSS to enhance the performance in p-i-n perovskite solar cells. The incorporation of WSe2 into PEDOT : PSS led to improved charge transport at the photoactive layer and electrode interface as well as the favorable growth of the perovskite crystal. As a result, a notable improvement in the performance of the solar cell having the WSe2-mediated PEDOT : PSS HTL was observed in comparison to that of the PEDOT : PSS only device, which had power conversion efficiencies of 16.3% and 13.8%, respectively. The facile approach proposed in this study may be readily extended to various other perovskite-based optoelectronic devices beyond solar cells toward the enhancement of device functionality.
引用
收藏
页码:1050 / 1058
页数:9
相关论文
共 50 条
[1]  
Acerce M, 2015, NAT NANOTECHNOL, V10, P313, DOI [10.1038/nnano.2015.40, 10.1038/NNANO.2015.40]
[2]   Fine Control of Perovskite Crystallization and Reducing Luminescence Quenching Using Self-Doped Polyaniline Hole Injection Layer for Efficient Perovskite Light-Emitting Diodes [J].
Ahn, Soyeong ;
Park, Min-Ho ;
Jeong, Su-Hun ;
Kim, Young-Hoon ;
Park, Jinwoo ;
Kim, Sungjin ;
Kim, Hobeom ;
Cho, Himchan ;
Wolf, Christoph ;
Pei, Mingyuan ;
Yang, Hoichang ;
Lee, Tae-Woo .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (06)
[3]   Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells [J].
Alemu, Desalegn ;
Wei, Hung-Yu ;
Ho, Kuo-Chuan ;
Chu, Chih-Wei .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (11) :9662-9671
[4]   2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition [J].
Ambrosi, Adriano ;
Sofer, Zdenek ;
Pumera, Martin .
CHEMICAL COMMUNICATIONS, 2015, 51 (40) :8450-8453
[5]   Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing [J].
Bi, Cheng ;
Shao, Yuchuan ;
Yuan, Yongbo ;
Xiao, Zhengguo ;
Wang, Chenggong ;
Gao, Yongli ;
Huang, Jinsong .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (43) :18508-18514
[6]   Using modified poly(3,4-ethylene dioxythiophene): Poly(styrene sulfonate) film as a counter electrode in dye-sensitized solar cells [J].
Chen, Jian-Ging ;
Wei, Hung-Yu ;
Ho, Kuo-Chuan .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (15-16) :1472-1477
[7]   Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes [J].
de Jong, MP ;
van IJzendoorn, LJ ;
de Voigt, MJA .
APPLIED PHYSICS LETTERS, 2000, 77 (14) :2255-2257
[8]   Efficient preparation of ultralarge graphene oxide using a PEDOT:PSS/GO composite layer as hole transport layer in polymer-based optoelectronic devices [J].
Dehsari, Hamed Sharifi ;
Shalamzari, Elham Khodabakhshi ;
Gavgani, Jaber Nasrollah ;
Taromi, Faramarz Afshar ;
Ghanbary, Shima .
RSC ADVANCES, 2014, 4 (98) :55067-55076
[9]  
Fiori G, 2014, NAT NANOTECHNOL, V9, P768, DOI [10.1038/nnano.2014.207, 10.1038/NNANO.2014.207]
[10]   Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency [J].
Heo, Jin Hyuck ;
Han, Hye Ji ;
Kim, Dasom ;
Ahn, Tae Kyu ;
Im, Sang Hyuk .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (05) :1602-1608