Theoretical predictions for low-temperature phases, softening of phonons and elastic stiffnesses, and electronic properties of sodium peroxide under high pressure

被引:9
作者
Jimlim, Pornmongkol [1 ,2 ,3 ]
Tsuppayakorn-aek, Prutthipong [1 ,2 ]
Pakornchote, Teerachote [1 ,2 ]
Ektarawong, Annop [1 ,2 ]
Pinsook, Udomsilp [1 ,2 ]
Bovornratanaraks, Thiti [1 ,2 ]
机构
[1] Chulalongkorn Univ, Dept Phys, Phys Energy Mat Res Unit, Extreme Condit Phys Res Lab, Bangkok 10330, Thailand
[2] Commiss Higher Educ, Thailand Ctr Excellence Phys, Bangkok 10400, Thailand
[3] Mahidol Wittayanusorn Sch, Dept Phys, Salaya 73170, Nakhon Pathom, Thailand
关键词
CRYSTAL; CONDUCTIVITY; STRAIN;
D O I
10.1039/c9ra03735g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-pressure phase stabilities up to 600 K and the related properties of Na2O2 under pressures up to 300 GPa were investigated using first-principles calculations and the quasi-harmonic approximation. Two high-pressure phases of Na2O2 that are thermodynamically and dynamically stable were predicted consisting of the Amm2 (distorted P (6) over bar 2m) and the P2(1)/c structures, which are stable at low temperature in the pressure range of 0-22 GPa and 22-28 GPa, respectively. However, the P (6) over bar 2m and Pbam structures become the most stable instead of the Amm2 and P2(1)/c structures at the elevated temperatures, respectively. Interestingly, the softening of some phonon modes and the decreasing of some elastic stiffnesses in the Amm2 structure were also predicted in the pressure ranges of 2-3 GPa and 9-10 GPa. This leads to the decreasing of phonon free energy and the increasing of the ELF value in the same pressure ranges. The HSE06 band gaps suggest that all phases are insulators, and they increase with increasing pressure. Our findings provide the P-T phase diagram of Na2O2, which may be useful for investigating the thermodynamic properties and experimental verification.
引用
收藏
页码:30964 / 30975
页数:12
相关论文
共 33 条
[1]   Ab initio investigation of the effect of pressure on the structure and electronic properties of alkali metal oxides and peroxides [J].
Aleinikova, M. V. ;
Zhuravlev, Yu. N. ;
Korabelnikov, D. V. .
RUSSIAN PHYSICS JOURNAL, 2012, 55 (05) :495-500
[2]  
[Anonymous], RSC ADV
[3]   FINITE ELASTIC STRAIN OF CUBIC CRYSTALS [J].
BIRCH, F .
PHYSICAL REVIEW, 1947, 71 (11) :809-824
[4]   GROUND-STATE OF THE ELECTRON-GAS BY A STOCHASTIC METHOD [J].
CEPERLEY, DM ;
ALDER, BJ .
PHYSICAL REVIEW LETTERS, 1980, 45 (07) :566-569
[5]   First principles methods using CASTEP [J].
Clark, SJ ;
Segall, MD ;
Pickard, CJ ;
Hasnip, PJ ;
Probert, MJ ;
Refson, K ;
Payne, MC .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (5-6) :567-570
[6]   Assessing the performance of recent density functionals for bulk solids [J].
Csonka, Gabor I. ;
Perdew, John P. ;
Ruzsinszky, Adrienn ;
Philipsen, Pier H. T. ;
Lebegue, Sebastien ;
Paier, Joachim ;
Vydrov, Oleg A. ;
Angyan, Janos G. .
PHYSICAL REVIEW B, 2009, 79 (15)
[7]   Charting the complete elastic properties of inorganic crystalline compounds [J].
de Jong, Maarten ;
Chen, Wei ;
Angsten, Thomas ;
Jain, Anubhav ;
Notestine, Randy ;
Gamst, Anthony ;
Sluiter, Marcel ;
Ande, Chaitanya Krishna ;
van der Zwaag, Sybrand ;
Plata, Jose J. ;
Toher, Cormac ;
Curtarolo, Stefano ;
Ceder, Gerbrand ;
Persson, Kristin A. ;
Asta, Mark .
SCIENTIFIC DATA, 2015, 2
[8]   Overall conductivity and NCL-type relaxation behavior in nanocrystalline sodium peroxide Na2O2 Consequences for Na-oxygen batteries [J].
Dunst, Andreas ;
Sternad, Michael ;
Wilkening, Martin .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2016, 211 :85-93
[9]   DIE KRISTALLSTRUKTUREN DER ALKALIPEROXYDE [J].
FOPPL, H .
ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1957, 291 (1-4) :12-50
[10]   AB-INITIO FORCE-CONSTANT METHOD FOR PHONON DISPERSIONS IN ALKALI-METALS [J].
FRANK, W ;
ELSASSER, C ;
FAHNLE, M .
PHYSICAL REVIEW LETTERS, 1995, 74 (10) :1791-1794