Monge-Ampere equations and generalized complex geometry - The two-dimensional case

被引:5
作者
Banos, Bertrand [1 ]
机构
[1] Univ Bretagne Occidentale, F-29285 Brest, France
关键词
geometry of PDE; Monge-Ampere equations; generalized complex geometry; differentiable forms;
D O I
10.1016/j.geomphys.2006.06.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We associate an integrable generalized complex structure with each two-dimensional symplectic Monge-Ampere equation of divergent type and, using the Gualtieri partial derivative operator, we characterize the conservation laws and the generating functions of such an equation as generalized holomorphic objects. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:841 / 853
页数:13
相关论文
共 13 条
[1]   Potentials for hyper-Kahler metrics with torsion [J].
Banos, B ;
Swann, A .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (13) :3127-3135
[2]  
BENBASSAT O, 2004, J SYMPLECT GEOM, V2, P309
[3]  
CAVALCANTI GR, 2005, MATHDG0501406
[4]  
CRAINIC M, 2004, MATHDG0412097
[5]   Geometry of hyper-Kahler connections with torsion [J].
Grantcharov, G ;
Poon, YS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 213 (01) :19-37
[6]  
GUALTIER M, 2004, MATHDG04090903
[7]  
GUALTIERI M, 2004, MATHDG0401221
[8]   Generalized Calabi-Yau manifolds [J].
Hitchin, N .
QUARTERLY JOURNAL OF MATHEMATICS, 2003, 54 :281-308
[9]  
HITCHIN NJ, 2005, MATHDG0503432
[10]  
KUSHNER A, 2006, IN PRESS CONTACT GEO