Commutators of flow maps of nonsmooth vector fields

被引:41
作者
Rampazzo, Franco
Sussmann, Hector J.
机构
[1] Univ Padua, Dipartimento Matemat Pura & Appl, I-35131 Padua, Italy
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
Lie bracket; Lipschitz vector field; commutativity; asymptotic formula; simultaneous flow-box; higher order bracket;
D O I
10.1016/j.jde.2006.04.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Relying on the notion of set-valued Lie bracket introduced in an earlier paper, we extend some classical results valid for smooth vector fields to the case when the vector fields are just Lipschitz. In particular, we prove that the flows of two Lipschitz vector fields commute for small times if and only if their Lie bracket vanishes everywhere (i.e., equivalently, if their classical Lie bracket vanishes almost everywhere). We also extend the asymptotic formula that gives an estimate of the lack of commutativity of two vector fields in terms of their Lie bracket, and prove a simultaneous flow box theorem for commuting families of Lipschitz vector fields. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:134 / 175
页数:42
相关论文
共 8 条
  • [1] Agrachev A., 1978, MATH USSR SB, V107, P487
  • [2] Agrachev A., 1979, J SOVIET MATH, V17, P1650
  • [3] CALCEATERRA C, IN PRESS J MATH ANAL
  • [4] Clarke F. H., 1998, GRAD TEXTS MATH
  • [5] Clarke FH, 1983, OPTIMIZATION NONSMOO
  • [6] KAWSKI M, 1997, OPERATORS SYSTEMS LI, P111, DOI DOI 10.1007/978-3-663-09823-2_10
  • [7] Rampazzo F, 2001, IEEE DECIS CONTR P, P2613, DOI 10.1109/CDC.2001.980661
  • [8] Lipschitz distributions and Anosov flows
    Simic, S
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (06) : 1869 - 1877