CFD modeling of particle settling in drilling fluids: Impact of fluid rheology and particle characteristics

被引:23
作者
Awad, Abdelrahman M. [1 ]
Hussein, Ibnelwaleed A. [1 ]
Nasser, Mustafa S. [1 ]
Karami, Hamidreza [2 ]
Ahmed, Ramadan [2 ]
机构
[1] Coll Engn Qatar Univ, Gas Proc Ctr, Doha, Qatar
[2] Univ Oklahoma, 100E Boyd St, Norman, OK 73019 USA
关键词
Particle settling; Cuttings shape; Drilling fluid; Aspect ratio; Drag coefficient; Particle size distribution;
D O I
10.1016/j.petrol.2020.108326
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The settling of drilling cuttings is important for the drilling and clean-out operations. The current article provides a Computational Fluid Dynamics (CFD) modeling study of particle settling behavior during the drilling operations, with a special focus on the impact of fluid rheology, flow regime, particle size and shape on the settling rate. The Eulerian-Lagrangian method are adopted to track particle trajectories in a shear-thinning fluid under quiescent conditions. The rheological properties of the drilling fluids are described by different rheological models. Settling of spherical and ellipsoidal cuttings, with various aspect ratios, is studied for particles with a diameter ranging between 2 and 6 mm. The settling behavior is predicted for particles with narrow (0.5-2 mm), medium (0.5-6 mm) and broad (0.5-10 mm) particle size distributions (PSD). Applying a non-Newtonian powerlaw model at low shear rates, where the fluid is in the Newtonian regime, resulted in 11-19% over-prediction of settling velocities as compared to the experimental data. On the other hand, ignoring the particle-induced shear rate by assuming a Newtonian fluid behavior in the transition regime showed 8-10% difference between the estimated and experimental settling rates. Therefore, the CFD computations of settling rates suggest that Cross and Carreau models provide more accurate predictions than a simple power-law model. The selection of the suitable rheological model is a key factor in predicting settling in drilling fluids. This is more important for small particles where the Newtonian behavior is dominant and particle-induced shear rate is low. Ellipsoidal cuttings exhibited significantly greater resistance to settling as compared to spherical particles, mainly due to the increased drag force. Further, the terminal settling velocity of ellipsoidal cuttings consistently increased with the particle aspect ratio. Cuttings with broad PSD showed similar to 32 times higher settling velocity than particles with narrow PSD. CFD results are validated with experimental measurements. Moreover, results for settling of non-spherical particles are validated with an empirical correlation. Agreement of experimental and theoretical predictions is observed when the fluid and flow regimes are well identified and described.
引用
收藏
页数:13
相关论文
共 39 条
[1]   CFD-DEM simulation of the hole cleaning process in a deviated well drilling: The effects of particle shape [J].
Akhshik, Siamak ;
Behzad, Mehdi ;
Rajabi, Majid .
PARTICUOLOGY, 2016, 25 :72-82
[2]  
[Anonymous], 2013, ANSYS Fluent Theory Guide, V15317, P724
[3]  
Aswad Z.A.R., 2014, 10th Int. Conf. Heat Transf. Fluid Mech. Thermodyn, P309
[4]   Cuttings transport: On the effect of drill pipe rotation and lateral motion on the cuttings bed [J].
Busch, Alexander ;
Johansen, Stein Tore .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 191
[5]   An Eulerian-Lagrangian CFD study of a particle settling in an orthogonal shear flow of a shear-thinning, mildly viscoelastic fluid [J].
Busch, Alexander ;
Johansen, Stein Tore .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2019, 263 :77-103
[6]  
Canonsburg T.D., 2012, Knowledge Creation Diffusion Utilization, V15317, P724
[7]   RHEOLOGICAL EQUATIONS FROM MOLECULAR NETWORK THEORIES [J].
CARREAU, PJ .
TRANSACTIONS OF THE SOCIETY OF RHEOLOGY, 1972, 16 (01) :99-&
[8]   Comparison of formulas for drag coefficient and settling velocity of spherical particles [J].
Cheng, Nian-Sheng .
POWDER TECHNOLOGY, 2009, 189 (03) :395-398
[9]  
Chhabra RP, 2007, CHEM IND-SER, V113
[10]   MOTION OF SPHERES IN POWER LAW (VISCOINELASTIC) FLUIDS AT INTERMEDIATE REYNOLDS-NUMBERS - A UNIFIED APPROACH [J].
CHHABRA, RP .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 1990, 28 (02) :89-94