Simulation study of sulfonate cluster swelling in ionomers

被引:9
作者
Allahyarov, Elshad [1 ,2 ,3 ]
Taylor, Philip L. [1 ]
Loewen, Hartmut [3 ]
机构
[1] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA
[2] Joint Lab Soft Matter, OIVTRAN, Moscow 127412, Russia
[3] HHU Dusseldorf, Inst Theoret Phys 2, D-40225 Dusseldorf, Germany
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 06期
关键词
diffusion; humidity; liquid theory; membranes; molecular clusters; molecular dynamics method; polymers; solvation; sulphur compounds; swelling; water; PERFLUOROSULFONIC ACID MEMBRANES; MOLECULAR-DYNAMICS SIMULATIONS; POLYMER ELECTROLYTE MEMBRANES; NAFION MEMBRANES; PROTON TRANSPORT; IONIC-CONDUCTIVITY; PENDANT CHAIN; WATER; MODEL; SCATTERING;
D O I
10.1103/PhysRevE.80.061802
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We have performed simulations to study how increasing humidity affects the structure of Nafion-like ionomers under conditions of low sulfonate concentration and low humidity. At the onset of membrane hydration, the clusters split into smaller parts. These subsequently swell, but then maintain constant the number of sulfonates per cluster. We find that the distribution of water in low-sulfonate membranes depends strongly on the sulfonate concentration. For a relatively low sulfonate concentration, nearly all the side-chain terminal groups are within cluster formations, and the average water loading per cluster matches the water content of membrane. However, for a relatively higher sulfonate concentration the water-to-sulfonate ratio becomes nonuniform. The clusters become wetter, while the intercluster bridges become drier. We note the formation of unusual shells of water-rich material that surround the sulfonate clusters.
引用
收藏
页数:12
相关论文
共 66 条
[1]   Predicted electric-field-induced hexatic structure in an ionomer membrane [J].
Allahyarov, Elshad ;
Taylor, Philip L. .
PHYSICAL REVIEW E, 2009, 80 (02)
[2]   Role of electrostatic forces in cluster formation in a dry ionomer [J].
Allahyarov, Elshad ;
Taylor, Philip L. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (15)
[3]   Simulation Study of the Correlation between Structure and Conductivity in Stretched Nafion [J].
Allahyarov, Elshad ;
Taylor, Philip L. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (03) :610-617
[4]   Hyflon ion membranes for fuel cells [J].
Arcella, V ;
Troglia, C ;
Ghielmi, A .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (20) :7646-7651
[5]   Nafion® perfluorinated membranes in fuel cells [J].
Banerjee, S ;
Curtin, DE .
JOURNAL OF FLUORINE CHEMISTRY, 2004, 125 (08) :1211-1216
[6]   A molecular dynamics simulation study of hydrated sulfonated poly(ether ether ketone) for application to polymer electrolyte membrane fuel cells: Effect of water content [J].
Brunello, Giuseppe ;
Lee, Seung Geol ;
Jang, Seung Soon ;
Qi, Yue .
JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2009, 1 (03)
[7]   PROTON CONDUCTION OF NAFION((R))-117 MEMBRANE BETWEEN 140 K AND ROOM-TEMPERATURE [J].
CAPPADONIA, M ;
ERNING, JW ;
STIMMING, U .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1994, 376 (1-2) :189-193
[8]   Ion transport in simple nanopores [J].
Chan, KY ;
Tang, YWA ;
Szalai, I .
MOLECULAR SIMULATION, 2004, 30 (2-3) :81-87
[9]   Thermodynamics and proton transport in Nafion - II. Proton diffusion mechanisms and conductivity [J].
Choi, P ;
Jalani, NH ;
Datta, R .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (03) :E123-E130
[10]  
Connolly D.J., 1966, US Patent, Patent No. [US3426297A, 3426297, 3282,875]