Harnack inequality for p-Laplacians associated to homogeneous p-Lagrangians

被引:2
作者
Capitanelli, Raffaela [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat Sci Applica, I-00161 Rome, Italy
关键词
nonlinear energy forms; fractals; Harnack inequality;
D O I
10.1016/j.na.2006.01.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider homogeneous p-Lagrangians and the associated nonlinear energy forms. By using the approach of the metric fractals, we prove the Hamack inequality for metric fractals whose homogeneous dimension is less than p. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1302 / 1317
页数:16
相关论文
共 19 条
[1]  
[Anonymous], 1992, MEASURE THEORY FINE
[2]   A Saint-Venant type principle for dirichlet forms on discontinuous media. [J].
Biroli, M ;
Mosco, U .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1995, 169 :125-181
[3]  
BIROLI M, 2004, 586P DIP MAT POL MIL
[4]  
BIROLI M, 2004, 585P DIP MAT POL MIL
[5]  
Capitanelli R., 2003, ADV MATH SCI APPL, V13, P301
[6]  
Capitanelli R., 2002, J NONLINEAR CONVEX A, V3, P67
[7]  
Capitanelli R., 2003, REND ACCAD NAZ SCI, V50
[8]   p-energy and p-harmonic functions on Sierpinski gasket type fractals [J].
Herman, PE ;
Peirone, R ;
Strichartz, RS .
POTENTIAL ANALYSIS, 2004, 20 (02) :125-148
[9]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747
[10]  
Kigami J., 2001, ANAL FRACTALS