Extended Robust Boolean Network of Budding Yeast Cell Cycle
被引:3
作者:
论文数: 引用数:
h-index:
机构:
Shafiekhani, Sajad
[1
,2
,3
]
Shafiekhani, Mojtaba
论文数: 0引用数: 0
h-index: 0
机构:
Amirkabir Univ Technol, Dept Biomed Engn, Tehran, IranUniv Tehran Med Sci, Sch Med, Dept Biomed Engn, Tehran, Iran
Shafiekhani, Mojtaba
[4
]
Rahbar, Sara
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tehran Med Sci, Sch Med, Dept Biomed Engn, Tehran, Iran
Univ Tehran Med Sci, Res Ctr Biomed Technol & Robot, Tehran, IranUniv Tehran Med Sci, Sch Med, Dept Biomed Engn, Tehran, Iran
Rahbar, Sara
[1
,2
]
论文数: 引用数:
h-index:
机构:
Jafari, Amir Homayoun
[1
,2
]
机构:
[1] Univ Tehran Med Sci, Sch Med, Dept Biomed Engn, Tehran, Iran
[2] Univ Tehran Med Sci, Res Ctr Biomed Technol & Robot, Tehran, Iran
[3] Univ Tehran Med Sci, Students Sci Res Ctr, Tehran, Iran
Background: How to explore the dynamics of transition probabilities between phases of budding yeast cell cycle (BYCC) network based on the dynamics of protein activities that control this network? How to identify the robust structure of protein interactions of BYCC Boolean network (BN)? Budding yeast allows scientists to put experiments into effect in order to discover the intracellular cell cycle regulating structures which are well simulated by mathematical modeling. Methods: We extended an available deterministic BN of proteins responsible for the cell cycle to a Markov chain model containing apoptosis besides G1, S, G2, M, and stationary G1. Using genetic algorithm (GA), we estimated the kinetic parameters of the extended BN model so that the subsequent transition probabilities derived using Markov chain model of cell states as normal cell cycle becomes the maximum while the structure of chemical interactions of extended BN of cell cycle becomes more stable. Results: Using kinetic parameters optimized by GA, the probability of the subsequent transitions between cell cycle phases is maximized. The relative basin size of stationary G1 increased from 86% to 96.48% while the number of attractors decreased from 7 in the original model to 5 in the extended one. Hence, an increase in the robustness of the system has been achieved. Conclusion: The structure of interacting proteins in cell cycle network affects its robustness and probabilities of transitions between different cell cycle phases. Markov chain and BN are good approaches to study the stability and dynamics of the cell cycle network.
机构:
Univ Calif San Francisco, Calif Inst Quantitat Biosci, Dept Biochem & Biophys, San Francisco, CA 94158 USA
Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
Howard Hughes Med Inst, St Louis, MO 63110 USAUniv Calif San Francisco, Calif Inst Quantitat Biosci, Dept Biochem & Biophys, San Francisco, CA 94158 USA
Stewart-Ornstein, Jacob
Chen, Susan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Francisco, Calif Inst Quantitat Biosci, Dept Biochem & Biophys, San Francisco, CA 94158 USAUniv Calif San Francisco, Calif Inst Quantitat Biosci, Dept Biochem & Biophys, San Francisco, CA 94158 USA
Chen, Susan
Bhatnagar, Rajat
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Francisco, Calif Inst Quantitat Biosci, Dept Biochem & Biophys, San Francisco, CA 94158 USAUniv Calif San Francisco, Calif Inst Quantitat Biosci, Dept Biochem & Biophys, San Francisco, CA 94158 USA
Bhatnagar, Rajat
Weissman, Jonathan S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
Howard Hughes Med Inst, St Louis, MO 63110 USAUniv Calif San Francisco, Calif Inst Quantitat Biosci, Dept Biochem & Biophys, San Francisco, CA 94158 USA
Weissman, Jonathan S.
El-Samad, Hana
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Francisco, Calif Inst Quantitat Biosci, Dept Biochem & Biophys, San Francisco, CA 94158 USAUniv Calif San Francisco, Calif Inst Quantitat Biosci, Dept Biochem & Biophys, San Francisco, CA 94158 USA
机构:
Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
MIT, Dept Biol, Howard Hughes Med Inst, Cambridge, MA 02140 USA
MIT, Koch Inst Integrat Canc Res, 77 Massachusetts Ave, Cambridge, MA 02139 USAWeizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel
机构:
Univ Calif San Francisco, Calif Inst Quantitat Biosci, Dept Biochem & Biophys, San Francisco, CA 94158 USA
Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
Howard Hughes Med Inst, St Louis, MO 63110 USAUniv Calif San Francisco, Calif Inst Quantitat Biosci, Dept Biochem & Biophys, San Francisco, CA 94158 USA
Stewart-Ornstein, Jacob
Chen, Susan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Francisco, Calif Inst Quantitat Biosci, Dept Biochem & Biophys, San Francisco, CA 94158 USAUniv Calif San Francisco, Calif Inst Quantitat Biosci, Dept Biochem & Biophys, San Francisco, CA 94158 USA
Chen, Susan
Bhatnagar, Rajat
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Francisco, Calif Inst Quantitat Biosci, Dept Biochem & Biophys, San Francisco, CA 94158 USAUniv Calif San Francisco, Calif Inst Quantitat Biosci, Dept Biochem & Biophys, San Francisco, CA 94158 USA
Bhatnagar, Rajat
Weissman, Jonathan S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA
Howard Hughes Med Inst, St Louis, MO 63110 USAUniv Calif San Francisco, Calif Inst Quantitat Biosci, Dept Biochem & Biophys, San Francisco, CA 94158 USA
Weissman, Jonathan S.
El-Samad, Hana
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Francisco, Calif Inst Quantitat Biosci, Dept Biochem & Biophys, San Francisco, CA 94158 USAUniv Calif San Francisco, Calif Inst Quantitat Biosci, Dept Biochem & Biophys, San Francisco, CA 94158 USA
机构:
Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
MIT, Dept Biol, Howard Hughes Med Inst, Cambridge, MA 02140 USA
MIT, Koch Inst Integrat Canc Res, 77 Massachusetts Ave, Cambridge, MA 02139 USAWeizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel