A Tracking-by-Detection System for Pedestrian Tracking Using Deep Learning Technique and Color Information

被引:10
作者
Mai Thanh Nhat Truong [1 ]
Kim, Sanghoon [1 ]
机构
[1] Hankyong Natl Univ, Dept Elect Elect & Control Engn, Anseong, South Korea
来源
JOURNAL OF INFORMATION PROCESSING SYSTEMS | 2019年 / 15卷 / 04期
基金
新加坡国家研究基金会;
关键词
Color Distribution; Convolutional Neural Network; Pedestrian Tracking; Tracking-by-Detection;
D O I
10.3745/JIPS.04.0132
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pedestrian tracking is a particular object tracking problem and an important component in various vision-based applications, such as autonomous cars and surveillance systems. Following several years of development, pedestrian tracking in videos remains challenging, owing to the diversity of object appearances and surrounding environments. In this research, we proposed a tracking-by-detection system for pedestrian tracking, which incorporates a convolutional neural network (CNN) and color information. Pedestrians in video frames are localized using a CNN-based algorithm, and then detected pedestrians are assigned to their corresponding tracklets based on similarities between color distributions. The experimental results show that our system is able to overcome various difficulties to produce highly accurate tracking results.
引用
收藏
页码:1017 / 1028
页数:12
相关论文
共 20 条
[1]  
[Anonymous], PROC CVPR IEEE
[2]  
[Anonymous], ADV NEURAL INFORM PR, DOI DOI 10.1109/TPAMI.2016.2577031
[3]  
[Anonymous], TRACKING DATASET
[4]  
Bochinski E, 2017, 2017 14TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS)
[5]  
Dehghan A., 2014, PEDESTRIAN EVACUATIO, P3, DOI DOI 10.1007/978-3-319-02447-9_1
[6]   Infrared and Visible Image Fusion Based on NSCT and Deep Learning [J].
Feng, Xin .
JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2018, 14 (06) :1405-1419
[7]   Speed/accuracy trade-offs for modern convolutional object detectors [J].
Huang, Jonathan ;
Rathod, Vivek ;
Sun, Chen ;
Zhu, Menglong ;
Korattikara, Anoop ;
Fathi, Alireza ;
Fischer, Ian ;
Wojna, Zbigniew ;
Song, Yang ;
Guadarrama, Sergio ;
Murphy, Kevin .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :3296-+
[8]   A Brief Review of Neural Networks Based Learning and Control and Their Applications for Robots [J].
Jiang, Yiming ;
Yang, Chenguang ;
Na, Jing ;
Li, Guang ;
Li, Yanan ;
Zhong, Junpei .
COMPLEXITY, 2017,
[9]   A CTR prediction approach for text advertising based on the SAE-LR deep neural network [J].
Jiang, Zilong ;
Gao, Shu ;
Dai, Wei .
Journal of Information Processing Systems, 2017, 13 (05) :1052-1070
[10]   The Sixth Visual Object Tracking VOT2018 Challenge Results [J].
Kristan, Matej ;
Leonardis, Ales ;
Matas, Jiri ;
Felsberg, Michael ;
Pflugfelder, Roman ;
Zajc, Luka Cehovin ;
Vojir, Tomas ;
Bhat, Goutam ;
Lukezic, Alan ;
Eldesokey, Abdelrahman ;
Fernandez, Gustavo ;
Garcia-Martin, Alvaro ;
Iglesias-Arias, Alvaro ;
Alatan, A. Aydin ;
Gonzalez-Garcia, Abel ;
Petrosino, Alfredo ;
Memarmoghadam, Alireza ;
Vedaldi, Andrea ;
Muhic, Andrej ;
He, Anfeng ;
Smeulders, Arnold ;
Perera, Asanka G. ;
Li, Bo ;
Chen, Boyu ;
Kim, Changick ;
Xu, Changsheng ;
Xiong, Changzhen ;
Tian, Cheng ;
Luo, Chong ;
Sun, Chong ;
Hao, Cong ;
Kim, Daijin ;
Mishra, Deepak ;
Chen, Deming ;
Wang, Dong ;
Wee, Dongyoon ;
Gavves, Efstratios ;
Gundogdu, Erhan ;
Velasco-Salido, Erik ;
Khan, Fahad Shahbaz ;
Yang, Fan ;
Zhao, Fei ;
Li, Feng ;
Battistone, Francesco ;
De Ath, George ;
Subrahmanyam, Gorthi R. K. S. ;
Bastos, Guilherme ;
Ling, Haibin ;
Galoogahi, Hamed Kiani ;
Lee, Hankyeol .
COMPUTER VISION - ECCV 2018 WORKSHOPS, PT I, 2019, 11129 :3-53