Music Genre Classification Using Transfer Learning

被引:6
作者
Liang, Beici [1 ]
Gu, Minwei [1 ]
机构
[1] Tencent Mus Entertainment, QQ Mus, Shenzhen, Peoples R China
来源
THIRD INTERNATIONAL CONFERENCE ON MULTIMEDIA INFORMATION PROCESSING AND RETRIEVAL (MIPR 2020) | 2020年
关键词
music genre classification; transfer learning;
D O I
10.1109/MIPR49039.2020.00085
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We proposed a transfer learning approach for audio-based classification of 11 western music genres, including Rock, Pop, Rap, Country, Folk, Metal, Jazz, Blues, R&B, Electronic Music and Classical Music. Multiple models were investigated. The best one can achieve 0.9799 ROC-AUC and 0.8938 PR-AUC on a private dataset of 1100 songs.
引用
收藏
页码:392 / 393
页数:2
相关论文
共 4 条
[1]   Cybersecurity for Future Presidents: An Interdisciplinary Non-majors Course [J].
Das, Aparna ;
Voorhees, David ;
Choi, Cynthia ;
Landwehr, Carl E. .
PROCEEDINGS OF THE 2017 ACM SIGCSE TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION (SIGCSE'17), 2017, :141-146
[2]  
Liang B., 2019, IEEE IJCNN
[3]  
Pons J., 2018, P INT SOC MUS INF RE, P637
[4]  
Pons Jordi, 2019, ARXIV190906654